Solar energy capacity is continuing to increase. The key challenge with integrating solar into buildings and the electric grid is its high power generation variability, which is a function of many factors, including a site's location, time, weather, and numerous physical attributes. There has been significant prior work on solar performance modeling and forecasting that infers a site's current and future solar generation based on these factors. Accurate solar performance models and forecasts are also a pre-requisite for conducting a wide range of building and grid energy-efficiency research. Unfortunately, much of the prior work is not accessible to researchers, either because it has not been released as open source, is time-consuming to re-implement, or requires access to proprietary data sources. To address the problem, we present Solar-TK, a data-driven toolkit for solar performance modeling and forecasting that is simple, extensible, and publicly accessible. Solar-TK's simple approach models and forecasts a site's solar output given only its location and a small amount of historical generation data. Solar-TK's extensible design includes a small collection of independent modules that connect together to implement basic modeling and forecasting, while also enabling users to implement new energy analytics. We plan to release Solar-TK as open source to enable research that requires realistic solar models and forecasts, and to serve as a baseline for comparing new solar modeling and forecasting techniques. We compare Solar-TK's simple approach with PVlib and show that it yields comparable accuracy. We present three case studies showing how Solar-TK can advance energy-efficiency research.
more »
« less
MagNet Challenge for Data-Driven Power Magnetics Modeling
This paper summarizes the main results and contributions of the MagNet Challenge 2023, an open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Challenge has (1) advanced the stateof-the-art in power magnetics modeling; (2) set up examples for fostering an open-source and transparent research community; (3) developed useful guidelines and practical rules for conducting data-driven research in power electronics; and (4) provided a fair performance benchmark leading to insights on the most promising future research directions. The competition yielded a collection of publicly disclosed software algorithms and tools designed to capture the distinct loss characteristics of power magnetic materials, which are mostly open-sourced. We have attempted to bridge power electronics domain knowledge with state-of-the-art advancements in artificial intelligence, machine learning, pattern recognition, and signal processing. The MagNet Challenge has greatly improved the accuracy and reduced the size of data-driven power magnetic material models. The models and tools created for various materials were meticulously documented and shared within the broader power electronics community.
more »
« less
- PAR ID:
- 10565017
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Open Journal of Power Electronics
- ISSN:
- 2644-1314
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundScientists have amassed a wealth of microbiome datasets, making it possible to study microbes in biotic and abiotic systems on a population or planetary scale; however, this potential has not been fully realized given that the tools, datasets, and computation are available in diverse repositories and locations. To address this challenge, we developed iMicrobe.us, a community-driven microbiome data marketplace and tool exchange for users to integrate their own data and tools with those from the broader community. FindingsThe iMicrobe platform brings together analysis tools and microbiome datasets by leveraging National Science Foundation–supported cyberinfrastructure and computing resources from CyVerse, Agave, and XSEDE. The primary purpose of iMicrobe is to provide users with a freely available, web-based platform to (1) maintain and share project data, metadata, and analysis products, (2) search for related public datasets, and (3) use and publish bioinformatics tools that run on highly scalable computing resources. Analysis tools are implemented in containers that encapsulate complex software dependencies and run on freely available XSEDE resources via the Agave API, which can retrieve datasets from the CyVerse Data Store or any web-accessible location (e.g., FTP, HTTP). ConclusionsiMicrobe promotes data integration, sharing, and community-driven tool development by making open source data and tools accessible to the research community in a web-based platform.more » « less
-
Abstract Quantum chemistry must evolve if it wants to fully leverage the benefits of the internet age, where the worldwide web offers a vast tapestry of tools that enable users to communicate and interact with complex data at the speed and convenience of a button press. The Open Chemistry project has developed an open‐source framework that offers an end‐to‐end solution for producing, sharing, and visualizing quantum chemical data interactively on the web using an array of modern tools and approaches. These tools build on some of the best open‐source community projects such as Jupyter for interactive online notebooks, coupled with 3D accelerated visualization, state‐of‐the‐art computational chemistry codes including NWChem and Psi4, and emerging machine learning and data mining tools such as ChemML and ANI. They offer flexible formats to import and export data, along with approaches to compare computational and experimental data.more » « less
-
With the growing availability and accessibility of big data in ecology, we face an urgent need to train the next generation of scientists in data science practices and tools. One of the biggest barriers for implementing a data-driven curriculum in undergraduate classrooms is the lack of training and support for educators to develop their own skills and time to incorporate these principles into existing courses or develop new ones. Alongside the research goals of the National Ecological Observatory Network (NEON), providing education and training are key components for building a community of scientists and users equipped to utilize large-scale ecological and environmental data. To address this need, the NEON Data Education Fellows program formed as a collaborative Faculty Mentoring Network (FMN) between scientists from NEON and university faculty interested in using NEON data and resources in their ecology classrooms. Like other FMNs, this group has two main goals: 1) to provide tools, resources, and support for faculty interested in developing data-driven curriculum, and (2) to make teaching materials that have been implemented and tested in the classroom available as open educational resources for other educators. We hosted this program using an open education and collaboration platform from the Quantitative Undergraduate Biology Education and Synthesis (QUBES) project. Here, we share lessons learned from facilitating five FMN cohorts and emphasize the successes, pitfalls, and opportunities for developing open education resources through community-driven collaborations.more » « less
-
In the 21st century with the rise of computing power, it has become increasingly important to create opportunities for students to learn to work with large, authentic, complex (LAC) data across multiple disciplines. DataFest, a hackathon style undergraduate event, creates a space for such inquiry due to the collaborative, data-driven, open-problem, real-world relevant nature of the challenge it presents. We present preliminary findings from research that explores how teams at DataFest leverage and integrate multidisciplinary tools and domain knowledge to engage productively with the data investigation process. Implications for statistics and data science education are discussed.more » « less
An official website of the United States government

