skip to main content


This content will become publicly available on July 1, 2025

Title: A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization

A stochastic algorithm is proposed, analyzed, and tested experimentally for solving continuous optimization problems with nonlinear equality constraints. It is assumed that constraint function and derivative values can be computed but that only stochastic approximations are available for the objective function and its derivatives. The algorithm is of the sequential quadratic optimization variety. Distinguishing features of the algorithm are that it only employs stochastic objective gradient estimates that satisfy a relatively weak set of assumptions (while using neither objective function values nor estimates of them) and that it allows inexact subproblem solutions to be employed, the latter of which is particularly useful in large-scale settings when the matrices defining the subproblems are too large to form and/or factorize. Conditions are imposed on the inexact subproblem solutions that account for the fact that only stochastic objective gradient estimates are employed. Convergence results are established for the method. Numerical experiments show that the proposed method vastly outperforms a stochastic subgradient method and can outperform an alternative sequential quadratic programming algorithm that employs highly accurate subproblem solutions in every iteration.

Funding: This material is based upon work supported by the National Science Foundation [Awards CCF-1740796 and CCF-2139735] and the Office of Naval Research [Award N00014-21-1-2532].

 
more » « less
Award ID(s):
2139735
PAR ID:
10565084
Author(s) / Creator(s):
; ;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
INFORMS Journal on Optimization
Volume:
6
Issue:
3-4
ISSN:
2575-1484
Page Range / eLocation ID:
173 to 195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gradient sampling (GS) methods for the minimization of objective functions that may be nonconvex and/or nonsmooth are proposed, analyzed, and tested. One of the most computationally expensive components of contemporary GS methods is the need to solve a convex quadratic subproblem in each iteration. By contrast, the methods proposed in this paper allow the use of inexact solutions of these subproblems, which, as proved in the paper, can be incorporated without the loss of theoretical convergence guarantees. Numerical experiments show that, by exploiting inexact subproblem solutions, one can consistently reduce the computational effort required by a GS method. Additionally, a strategy is proposed for aggregating gradient information after a subproblem is solved (potentially inexactly) as has been exploited in bundle methods for nonsmooth optimization. It is proved that the aggregation scheme can be introduced without the loss of theoretical convergence guarantees. Numerical experiments show that incorporating this gradient aggregation approach can also reduce the computational effort required by a GS method. 
    more » « less
  2. A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear-equality-constrained optimization problems in which the objective function is defined by an expectation. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, wherein each search direction is computed as the sum of a normal step (toward linearized feasibility) and a tangential step (toward objective decrease in the null space of the constraint Jacobian). However, the proposed method is unique from others in the literature in that it both allows the use of stochastic objective gradient estimates and possesses convergence guarantees even in the setting in which the constraint Jacobians may be rank-deficient. The results of numerical experiments demonstrate that the algorithm offers superior performance when compared with popular alternatives. 
    more » « less
  3. Pang, Jong-Shi (Ed.)
    This paper focuses on the design of sequential quadratic optimization (commonly known as SQP) methods for solving large-scale nonlinear optimization problems. The most computationally demanding aspect of such an approach is the computation of the search direction during each iteration, for which we consider the use of matrix-free methods. In particular, we develop a method that requires an inexact solve of a single QP subproblem to establish the convergence of the overall SQP method. It is known that SQP methods can be plagued by poor behavior of the global convergence mechanism. To confront this issue, we propose the use of an exact penalty function with a dynamic penalty parameter updating strategy to be employed within the subproblem solver in such a way that the resulting search direction predicts progress toward both feasibility and optimality. We present our parameter updating strategy and prove that, under reasonable assumptions, the strategy does not modify the penalty parameter unnecessarily. We close the paper with a discussion of the results of numerical experiments that illustrate the benefits of our proposed techniques. 
    more » « less
  4. Abstract

    We present a new feasible proximal gradient method for constrained optimization where both the objective and constraint functions are given by summation of a smooth, possibly nonconvex function and a convex simple function. The algorithm converts the original problem into a sequence of convex subproblems. Formulating those subproblems requires the evaluation of at most one gradient-value of the original objective and constraint functions. Either exact or approximate subproblems solutions can be computed efficiently in many cases. An important feature of the algorithm is the constraint level parameter. By carefully increasing this level for each subproblem, we provide a simple solution to overcome the challenge of bounding the Lagrangian multipliers and show that the algorithm follows a strictly feasible solution path till convergence to the stationary point. We develop a simple, proximal gradient descent type analysis, showing that the complexity bound of this new algorithm is comparable to gradient descent for the unconstrained setting which is new in the literature. Exploiting this new design and analysis technique, we extend our algorithms to some more challenging constrained optimization problems where (1) the objective is a stochastic or finite-sum function, and (2) structured nonsmooth functions replace smooth components of both objective and constraint functions. Complexity results for these problems also seem to be new in the literature. Finally, our method can also be applied to convex function constrained problems where we show complexities similar to the proximal gradient method.

     
    more » « less
  5. We consider a line-search method for continuous optimization under a stochastic setting where the function values and gradients are available only through inexact probabilistic zeroth and first-order oracles. These oracles capture multiple standard settings including expected loss minimization and zeroth-order optimization. Moreover, our framework is very general and allows the function and gradient estimates to be biased. The proposed algorithm is simple to describe, easy to implement, and uses these oracles in a similar way as the standard deterministic line search uses exact function and gradient values. Under fairly general conditions on the oracles, we derive a high probability tail bound on the iteration complexity of the algorithm when applied to non-convex smooth functions. These results are stronger than those for other existing stochastic line search methods and apply in more general settings. 
    more » « less