skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced near-infrared absorption in lattice-matched Sc 0.14 Al 0.86 N/GaN multi-quantum wells: growth optimization and insights into polarization parameters
We report on the near-infrared intersubband (ISB) absorption properties of strain-free Sc0.14Al0.86N/GaN multiple quantum wells (MQWs) grown on c-plane GaN substrates by molecular beam epitaxy. These MQWs exhibit strong, sharp, and tunable absorption energies between 515 meV and 709 meV, for well widths ranging from 7 nm to 1.5 nm, respectively. Observation of ISB absorption in ultra-thin Sc0.14Al0.86N/GaN MQWs not only extends the near-infrared range accessible with Sc-containing nitrides but also highlights the challenges of growing nanometer-thick GaN quantum wells. We explore the effects of growth temperature on absorption characteristics and find that substrate temperatures above 600°C significantly enhance ISB absorption intensity but also introduce an energy redshift for the narrowest wells. The redshift is attributed to increased interface roughness due to ScAlN surface morphology degradation at higher temperatures. Additionally, a comparison of experimental results with simulated band-structures indicates that the magnitude of net polarization rises faster with Sc-composition than previously suggested by theoretical calculations. This study advances the prospects of ScAlN/GaN heterostructures for novel photonic devices in the technologically important near-infrared range.  more » « less
Award ID(s):
2414283
PAR ID:
10565118
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
15
Issue:
2
ISSN:
2159-3930
Format(s):
Medium: X Size: Article No. 164
Size(s):
Article No. 164
Sponsoring Org:
National Science Foundation
More Like this
  1. Growth of wurtzite Sc x Al 1−x N (x < 0.23) by plasma-assisted molecular-beam epitaxy on c-plane GaN at high temperatures significantly alters the extracted lattice constants of the material due to defects likely associated with remnant phases. In contrast, ScAlN grown below a composition-dependent threshold temperature exhibits uniform alloy distribution, reduced defect density, and atomic-step surface morphology. The c-plane lattice constant of this low-temperature ScAlN varies with composition as expected from previous theoretical calculations and can be used to reliably estimate alloy composition. Moreover, lattice-matched Sc 0.18 Al 0.82 N/GaN multi-quantum wells grown under these conditions display strong and narrow near-infrared intersubband absorption lines that confirm advantageous optical and electronic properties. 
    more » « less
  2. Wurtzite ScxAl1−xN/GaN (x = 0.13–0.18) multi-quantum wells grown by molecular beam epitaxy on c-plane GaN are found to exhibit remarkably strong and narrow near-infrared intersubband absorption in the technologically important 1.8–2.4 μm range. Band structure simulations reveal that, for GaN wells wider than 3 nm, the quantized energies are set by the steep triangular profile of the conduction band caused by intrinsic polarization fields. As a result, the intersubband transition energies provide unique and direct access to essential ScAlN polarization parameters. Measured infrared absorption indicates that the spontaneous polarization difference of the presumed lattice-matched Sc0.18Al0.82N/GaN heterostructure is smaller than the theoretically calculated value. The intersubband transition energies are relatively insensitive to the barrier alloy composition indicating negligible variation of the net polarization field in the probed 0.13–0.18 Sc composition range. 
    more » « less
  3. Using comprehensive x-ray reciprocal space mapping, we establish the precise lattice-matching composition for wurtzite ScxAl1−xN layers on (0001) GaN to be x = 0.14 ± 0.01. 100 nm thick ScxAl1−xN films (x = 0.09–0.19) were grown in small composition increments on c-plane GaN templates by plasma-assisted molecular beam epitaxy. The alloy composition was estimated from the fit of the (0002) x-ray peak positions, assuming the c-lattice parameter of ScAlN films coherently strained on GaN increases linearly with Sc-content determined independently by Rutherford backscattering spectrometry [Dzuba et al., J. Appl. Phys. 132, 175701 (2022)]. Reciprocal space maps obtained from high-resolution x-ray diffraction measurements of the (101¯5) reflection reveal that ScxAl1−xN films with x = 0.14 ± 0.01 are coherently strained with the GaN substrate, while the other compositions show evidence of relaxation. The in-plane lattice-matching with GaN is further confirmed for a 300 nm thick Sc0.14Al0.86N layer. The full-width-at-half-maximum of the (0002) reflection rocking curve for this Sc0.14Al0.86N film is 106 arc sec and corresponds to the lowest value reported in the literature for wurtzite ScAlN films. 
    more » « less
  4. Abstract In this work, an electron blocking layer (EBL) free light emitting diode (LED) nanowire is proposed with alternate prestrained layers of InxGa1−xN/GaN, which are inserted between the GaN/InGaN multi‐quantum wells (MQWs) and n‐GaN layer. This study signifies the role of prestrained layers on the piezoelectric polarization of LED nanowires, for enhanced luminescence. When compared with the conventional one, the EBL free LED nanowire with prestrained layer shows an enhancement of ~2.897% efficiency, which occurs due to the reduction of polarization field in the active region. The LED with 15% indium in the prestrained layer obtains a maximum efficiency of 85.21% along with a minimum efficiency droop of 3.848% at 40 mA injected current. The proposed III‐nitride LED nanostructure allows for achieving superior optical power across the output spectral range. 
    more » « less
  5. In the manufacture of semiconductor devices, cracking of heterostructures has been recognized as a major obstacle for their post-growth processing. In this work, we explore cracked GaN/AlN multi-quantum wells (MQWs) to study the influence of pressure on the recombination energy of the photoluminescence (PL) from the polar GaN QWs. We grow GaN/AlN MQWs on a GaN(0001)/sapphire template, which provides 2.4% tensile strain for epitaxial AlN. This strain relaxes through the generation and propagation of cracks, resulting in a final inhomogeneous distribution of stress throughout the film. The crack-induced strain variation investigated by micro-Raman spectroscopy and X-ray diffraction mapping revealed a correlation between the spacing of the cracks and the amount of strain between them. We have developed a 2D model that allows us to calculate the spatial variation of the in-plane strain in the GaN and AlN layers. The measured values of compressive in-plane strain in the GaN QWs vary from -0.4 % away from cracks, to -0.7 % near cracks. PL from the GaN QWs exhibits a clear correlation to the varying strain resulting in an energy shift of ∼ 140 meV. As a result, we can experimentally calculate a pressure coefficient of PL energy of ∼ -60.4 meV/GPa for the ∼ 7 nm thick polar GaN QWs. This agrees well with the previously predicted theoretical results by Kaminska et al. in 2016 [DOI: 10.1063/1.4962282], which were demonstrated to break down for such wide QWs. We will discuss this difference with respect to the reduction in both the expected point defects and extended defects resulting from not doping and growth on a GaN template, respectively. As a result, our work indicates that cracks can be utilized for investigating some fundamental material properties related to strain effects. 
    more » « less