skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pinpointing lattice-matched conditions for wurtzite ScxAl1−xN/GaN heterostructures with x-ray reciprocal space analysis
Using comprehensive x-ray reciprocal space mapping, we establish the precise lattice-matching composition for wurtzite ScxAl1−xN layers on (0001) GaN to be x = 0.14 ± 0.01. 100 nm thick ScxAl1−xN films (x = 0.09–0.19) were grown in small composition increments on c-plane GaN templates by plasma-assisted molecular beam epitaxy. The alloy composition was estimated from the fit of the (0002) x-ray peak positions, assuming the c-lattice parameter of ScAlN films coherently strained on GaN increases linearly with Sc-content determined independently by Rutherford backscattering spectrometry [Dzuba et al., J. Appl. Phys. 132, 175701 (2022)]. Reciprocal space maps obtained from high-resolution x-ray diffraction measurements of the (101¯5) reflection reveal that ScxAl1−xN films with x = 0.14 ± 0.01 are coherently strained with the GaN substrate, while the other compositions show evidence of relaxation. The in-plane lattice-matching with GaN is further confirmed for a 300 nm thick Sc0.14Al0.86N layer. The full-width-at-half-maximum of the (0002) reflection rocking curve for this Sc0.14Al0.86N film is 106 arc sec and corresponds to the lowest value reported in the literature for wurtzite ScAlN films.  more » « less
Award ID(s):
2004462
PAR ID:
10591631
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
125
Issue:
5
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wurtzite ScxAl1−xN/GaN (x = 0.13–0.18) multi-quantum wells grown by molecular beam epitaxy on c-plane GaN are found to exhibit remarkably strong and narrow near-infrared intersubband absorption in the technologically important 1.8–2.4 μm range. Band structure simulations reveal that, for GaN wells wider than 3 nm, the quantized energies are set by the steep triangular profile of the conduction band caused by intrinsic polarization fields. As a result, the intersubband transition energies provide unique and direct access to essential ScAlN polarization parameters. Measured infrared absorption indicates that the spontaneous polarization difference of the presumed lattice-matched Sc0.18Al0.82N/GaN heterostructure is smaller than the theoretically calculated value. The intersubband transition energies are relatively insensitive to the barrier alloy composition indicating negligible variation of the net polarization field in the probed 0.13–0.18 Sc composition range. 
    more » « less
  2. Growth of wurtzite Sc x Al 1−x N (x < 0.23) by plasma-assisted molecular-beam epitaxy on c-plane GaN at high temperatures significantly alters the extracted lattice constants of the material due to defects likely associated with remnant phases. In contrast, ScAlN grown below a composition-dependent threshold temperature exhibits uniform alloy distribution, reduced defect density, and atomic-step surface morphology. The c-plane lattice constant of this low-temperature ScAlN varies with composition as expected from previous theoretical calculations and can be used to reliably estimate alloy composition. Moreover, lattice-matched Sc 0.18 Al 0.82 N/GaN multi-quantum wells grown under these conditions display strong and narrow near-infrared intersubband absorption lines that confirm advantageous optical and electronic properties. 
    more » « less
  3. The structure and optical characteristics of thin (∼30 nm) wurtzite AlInN films grown pseudomorphic on free-standing, c-plane GaN substrates are presented. The Al1−xInxN layers are grown by metalorganic chemical vapor deposition, resulting in films with varying In content from x = 0.142 to 0.225. They are measured using atomic force microscopy, x-ray diffraction, reciprocal space mapping, and spectroscopic ellipsometry (SE). The pseudomorphic AlInN layers provide a set where optical properties can be determined without additional variability caused by lattice relaxation, a crucial need for designing devices. They have smooth surfaces (rms < 0.29 nm) with minimum pit areas when the In content is near lattice-matched to GaN. As expected, SE shows that the refractive index increases and the bandgap energy decreases with increased In-content. Plots of bandgap energy vs In content are fitted with a single bowing parameter of 3.19 eV when using bandgap energies for AlN and InN pseudomorphic to GaN, which is lower than previous measurements and closer to theoretical predictions. 
    more » « less
  4. We report on the near-infrared intersubband (ISB) absorption properties of strain-free Sc0.14Al0.86N/GaN multiple quantum wells (MQWs) grown on c-plane GaN substrates by molecular beam epitaxy. These MQWs exhibit strong, sharp, and tunable absorption energies between 515 meV and 709 meV, for well widths ranging from 7 nm to 1.5 nm, respectively. Observation of ISB absorption in ultra-thin Sc0.14Al0.86N/GaN MQWs not only extends the near-infrared range accessible with Sc-containing nitrides but also highlights the challenges of growing nanometer-thick GaN quantum wells. We explore the effects of growth temperature on absorption characteristics and find that substrate temperatures above 600°C significantly enhance ISB absorption intensity but also introduce an energy redshift for the narrowest wells. The redshift is attributed to increased interface roughness due to ScAlN surface morphology degradation at higher temperatures. Additionally, a comparison of experimental results with simulated band-structures indicates that the magnitude of net polarization rises faster with Sc-composition than previously suggested by theoretical calculations. This study advances the prospects of ScAlN/GaN heterostructures for novel photonic devices in the technologically important near-infrared range. 
    more » « less
  5. Data are presented on strain compensation in InGaN-based multiple quantum wells (MQW) using AlGaN interlayers (ILs). The MQWs consist of five periods of InxGa1-xN/AlyGa1-yN/GaN emitting in the green (λ ∼ 535 nm ± 15 nm), and the AlyGa1-yN IL has an Al composition of y = 0.42. The IL is varied from 0 - 2.1 nm, and the relaxation of the MQW with respect to the GaN template layer varies with IL thickness as determined by reciprocal space mapping about the (202¯5) reflection. The minimum in the relaxation occurs at an interlayer thickness of 1 nm, and the MQW is nearly pseudomorphic to GaN. Both thinner and thicker ILs display increased relaxation. Photoluminescence data shows enhanced spectral intensity and narrower full width at half maximum for the MQW with 1 nm thick ILs, which is a product of pseudomorphic layers with lower defect density and non-radiative recombination. 
    more » « less