Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy.
more »
« less
This content will become publicly available on December 1, 2025
A model of thermodynamic stabilization of nanocrystalline grain boundaries in alloy systems
Nanocrystalline (NC) materials are intrinsically unstable against grain growth. Significant research efforts have been dedicated to suppressing the grain growth by solute segregation, including the pursuit of a special NC structure that minimizes the total free energy and completely eliminates the driving force for grain growth. This fully stabilized state has been predicted theoretically and by simulations but is yet to be confirmed experimentally. To better understand the nature of the full stabilization, we propose a simple two-dimensional model capturing the coupled processes of grain boundary (GB) migration and solute diffusion. Kinetic Monte Carlo simulations based on this model reproduce the fully stabilized polycrystalline state and link it to the condition of zero GB free energy. The simulations demonstrate the emergence of a fully stabilized state by the divergence of capillary wave amplitudes on planar GBs and by fragmentation of a large grain into a stable ensemble of smaller grains. The role of solute diffusion in the full stabilization is examined. Possible extensions of the model are discussed.
more »
« less
- Award ID(s):
- 2103431
- PAR ID:
- 10565173
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Acta Materialia
- Volume:
- 281
- Issue:
- C
- ISSN:
- 1359-6454
- Page Range / eLocation ID:
- 120404
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The interaction of alloying elements with grain boundaries (GBs) influences many phenomena, such as microstructural evolution and transport. While GB solute segregation has been the subject of active research in recent years, most studies focus on ground-state GB structures, i.e., lowest energy GBs. The impact of GB metastability on solute segregation remains poorly understood. Herein, we leverage atomistic simulations to generate metastable structures for a series of [001] and [110] symmetric tilt GBs in a model Al–Mg system and quantify Mg segregation to individual sites within these boundaries. Our results show large variations in the atomic Voronoi volume due to GB metastability, which are found to influence the segregation energy. The atomistic data are then used to train a Gaussian Process machine learning model, which provides a probabilistic description of the GB segregation energy in terms of the local atomic environment. In broad terms, our approach extends existing GB segregation models by accounting for variability due to GB metastability, where the segregation energy is treated as a distribution rather than a single-valued quantity.more » « less
-
Solute segregation in materials with grain boundaries (GBs) has emerged as a popular method to thermodynamically stabilize nanocrystalline structures. However, the impact of varied GB crystallographic character on solute segregation has never been thoroughly examined. This work examines Co solute segregation in a dataset of 7272 Al bicrystal GBs that span the 5D space of GB crystallographic character. Considerable attention is paid to verification of the calculations in the diverse and large set of GBs. In addition, the results of this work are favorably validated against similar bicrystal and polycrystal simulations. As with other work, we show that Co atoms exhibit strong segregation to sites in Al GBs and that segregation correlates strongly with GB energy and GB excess volume. Segregation varies smoothly in the 5D crystallographic space but has a complex landscape without an obvious functional form.more » « less
-
The stabilization of supported nanoclusters is critical for different applications, including catalysis and plasmonics. Herein we investigate the impact of MoS 2 grain boundaries (GBs) on the nucleation and growth of Pt NCs. The optimum atomic structure of the metal clusters is obtained using an adaptive genetic algorithm that employs a hybrid approach based on atomistic force fields and density functional theory. Our findings show that GBs stabilize the NCs up to a cluster size of nearly ten atoms, and with larger clusters having a similar binding to the pristine system. Notably, Pt monomers are found to be attracted to GB cores achieving 60% more stabilization compared to the pristine surface. Furthermore, we show that the nucleation and growth of the metal seeds are facile with low kinetic barriers, which are of similar magnitude to the diffusion barriers of metals on the pristine surface. The findings highlight the need to engineer ultrasmall NCs to take advantage of enhanced stabilization imparted by the GB region, particularly to circumvent sintering behavior for high-temperature applications.more » « less
-
Grain growth in polycrystals is traditionally considered a capillarity-driven process, where grain boundaries (GBs) migrate toward their centers of curvature (i.e., mean curvature flow) with a velocity proportional to the local curvature (including extensions to account for anisotropic GB energy and mobility). Experimental and simulation evidence shows that this simplistic view is untrue. We demonstrate that the failure of the classical mean curvature flow description of grain growth mainly originates from the shear deformation naturally coupled with GB motion (i.e., shear coupling). Our findings are built on large-scale microstructure evolution simulations incorporating the fundamental (crystallography-respecting) microscopic mechanism of GB migration. The nature of the deviations from curvature flow revealed in our simulations is consistent with observations in recent experimental studies on different materials. This work also demonstrates how to incorporate the mechanical effects that are essential to the accurate prediction of microstructure evolution.more » « less
An official website of the United States government
