Nanocrystalline (NC) materials are intrinsically unstable against grain growth. Significant research efforts have been dedicated to suppressing the grain growth by solute segregation, including the pursuit of a special NC structure that minimizes the total free energy and completely eliminates the driving force for grain growth. This fully stabilized state has been predicted theoretically and by simulations but is yet to be confirmed experimentally. To better understand the nature of the full stabilization, we propose a simple two-dimensional model capturing the coupled processes of grain boundary (GB) migration and solute diffusion. Kinetic Monte Carlo simulations based on this model reproduce the fully stabilized polycrystalline state and link it to the condition of zero GB free energy. The simulations demonstrate the emergence of a fully stabilized state by the divergence of capillary wave amplitudes on planar GBs and by fragmentation of a large grain into a stable ensemble of smaller grains. The role of solute diffusion in the full stabilization is examined. Possible extensions of the model are discussed.
more »
« less
The Role of Grain Boundary Diffusion in the Solute Drag Effect
Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy.
more »
« less
- Award ID(s):
- 2103431
- PAR ID:
- 10321041
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2079-4991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The interaction of alloying elements with grain boundaries (GBs) influences many phenomena, such as microstructural evolution and transport. While GB solute segregation has been the subject of active research in recent years, most studies focus on ground-state GB structures, i.e., lowest energy GBs. The impact of GB metastability on solute segregation remains poorly understood. Herein, we leverage atomistic simulations to generate metastable structures for a series of [001] and [110] symmetric tilt GBs in a model Al–Mg system and quantify Mg segregation to individual sites within these boundaries. Our results show large variations in the atomic Voronoi volume due to GB metastability, which are found to influence the segregation energy. The atomistic data are then used to train a Gaussian Process machine learning model, which provides a probabilistic description of the GB segregation energy in terms of the local atomic environment. In broad terms, our approach extends existing GB segregation models by accounting for variability due to GB metastability, where the segregation energy is treated as a distribution rather than a single-valued quantity.more » « less
-
Additions of solute that trap vacancies slow down vacancy diffusion and promote point-defect recombination in alloys subjected to irradiation. Such selective alloying can thus help to minimize the detrimental consequences resulting from point defect fluxes. The current work investigates the effect of solute additions on the recombi- nation rate using kinetic Monte Carlo simulations for a model alloy system, which was parametrized to Cu-Ag in the dilute limit, but with an increased solubility limit, ≈0.86 at.% at 300 K. As the solute concentration was increased above 0.1 at.%, solute clustering was observed and led to a strong increase in recombination rate. The beneficial effects of solute clustering on reducing vacancy mobility, and reducing solute drag, were analyzed by calculating relevant transport coefficients using the KineCluE code (Schuler et al., Computational Materials Science (2020) 172,109,191). Moreover, it was observed in the KMC simulations that large recombination rates resulted in a shift of steady-state distributions of solute cluster sizes to smaller clusters compared to equilibrium distributions in the solid solution. This shift is rationalized as resulting from the irreversible character of the interstitial-vacancy recombination reaction. These results suggest a novel irradiation effect on phase stability where a high recombination rate increases the solubility limit of a solute at steady state over its equilibrium value.more » « less
-
The sintering behavior of nanoparticles (NPs), which determines the quality of additively nanomanufactured products, differs from conventional understanding established for microparticles. As NPs have a high surface-to-volume ratio, they are subjected to a higher influence from surface tension and a lower melting point than microparticles, resulting in variations in both crystallographic defect-mediated and surface diffusion mechanisms. Meanwhile, the interplay between these controlling mechanisms in NPs has not been well understood, primarily because sintering occurs on the nanosecond timescale, making it an exceptionally transient process. In this work, sintering of both equal and unequal sized Ag and Cu NP doublets with and without misorientation (both tilt and twist) is modeled through molecular dynamics (MD) simulations. The formation and evolution of crystallographic defects, such as vacancies, dislocations, stacking faults, twin boundaries, and grain boundaries, during sintering are investigated. The influence of these defects on plastic deformation and diffusion mechanisms, such as volume diffusion and grain boundary (GB) diffusion, is discussed to elucidate the responsible sintering mechanisms. The surface diffusion mechanism is visualized by using detailed atomic trajectories generated during the sintering process. Finally, the overall effectiveness of all diffusion sintering mechanisms is quantified. This study provides first insights into the complexity and dynamics of NP sintering mechanisms which can aid in the development of accurate predictive models.more » « less
-
Solute segregation in materials with grain boundaries (GBs) has emerged as a popular method to thermodynamically stabilize nanocrystalline structures. However, the impact of varied GB crystallographic character on solute segregation has never been thoroughly examined. This work examines Co solute segregation in a dataset of 7272 Al bicrystal GBs that span the 5D space of GB crystallographic character. Considerable attention is paid to verification of the calculations in the diverse and large set of GBs. In addition, the results of this work are favorably validated against similar bicrystal and polycrystal simulations. As with other work, we show that Co atoms exhibit strong segregation to sites in Al GBs and that segregation correlates strongly with GB energy and GB excess volume. Segregation varies smoothly in the 5D crystallographic space but has a complex landscape without an obvious functional form.more » « less
An official website of the United States government

