skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 19, 2026

Title: HIGH-THROUGHPUT ACOUSTIC SORTING OF CELLULAR-SIZED MICROPARTICLES IN 3D MICROFLUIDIC CHANNELS
This manuscript presents high-throughput sorting of cellular-sized microparticles within a three-dimensional microfluidic channel by focused bulk acoustic wave (BAW) produced by a Self-Focusing Acoustic Transducer (SFAT). The focused ultrasound induces a substantially higher acoustic radiation force within the focal region, enabling sorting based on particle size and density. Unlike surface-acoustic-wave-based setups, the BAW-based technique uses a three-dimensional microfluidic channel through which a mixture of particles is transported, while SFAT(s) may be placed at multiple points along the channel for multi-stage sorting. The technique has been successfully used in sorting 50 μm microparticles, which are analogous to cancerous or differentiated Mesenchymal Stem Cells (MSC), from 30 μm microparticles, which are analogous to healthy MSC. The sorting results in 97.5% purity at the smaller microparticle outlet and a 97.2% recovery rate for the smaller particles. The technique allows sorting 650,000 smaller and 142,000 larger microparticles within a mere 10 minutes.  more » « less
Award ID(s):
2129856
PAR ID:
10565312
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Subject(s) / Keyword(s):
Bulk Acoustic Wave Sorting, 3D Microfluidics, Cellular-sized Sorting, Precision 3D Printing
Format(s):
Medium: X
Location:
Kaohsiung, Taiwan
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Separation of microparticles and cells serves a critical step in many applications such as in biological analyses, food production, chemical processing, and medical diagnostics. Sorting on the microscale exhibits certain advantages in comparison with that on the macroscale as it requires minuscule sample or reagents volume and thus reduced analysis cycle time, smaller size of devices, and lower fabrication costs. Progresses have been made over time to improve the efficiency of these microscale particle manipulation techniques. Many different techniques have been used to attain accurate particle sorting and separation in a continuous manner on the microscale level, which can be categorized as either passive or active methods. Passive techniques achieve accurate manipulation of particles through their interaction with surrounding flow by carefully designed channel structures, without using external fields. As an alternative, active techniques utilize external fields (e.g., acoustic, electronic, optical, and magnetic field, etc.) to realize desired pattern of motion for particles with specific properties. Among numerous active methods for microfluidic particle sorting, the magnetic field has been widely used in biomedical and chemical applications to achieve mixing, focusing, and separating of reagents and bioparticles. This paper aims to provide a thorough review on the classic and most up-to-date magnetic sorting and separation techniques to manipulate microparticles including the discussions on the basic concept, working principle, experimental details, and device performance. 
    more » « less
  2. Numerous applications in medical diagnostics, cell engineering therapy, and biotechnology require the identification and sorting of cells that express desired molecular surface markers. We developed a microfluidic method for high-throughput and label-free sorting of biological cells by their affinity of molecular surface markers to target ligands. Our approach consists of a microfluidic channel decorated with periodic skewed ridges and coated with adhesive molecules. The periodic ridges form gaps with the opposing channel wall that are smaller than the cell diameter, thereby ensuring cell contact with the adhesive surfaces. Using three-dimensional computer simulations, we examine trajectories of adhesive cells in the ridged microchannels. The simulations reveal that cell trajectories are sensitive to the cell adhesion strength. Thus, the differential cell trajectories can be leveraged for adhesion-based cell separation. We probe the effect of cell elasticity on the adhesion-based sorting and show that cell elasticity can be utilized to enhance the resolution of the sorting. Furthermore, we investigate how the microchannel ridge angle can be tuned to achieve an efficient adhesion-based sorting of cells with different compliance. 
    more » « less
  3. Deterministic lateral displacement (DLD) is a microfluidic micro/nanopost array-based technique for size-based particle separations. A key challenge in scaling DLD for handling smaller particles is that creating such “nanoDLD” arrays can be cost-intensive with substantial technical hurdles. To circumvent such issues, here we explore a new “hexagonally arranged triangles (HAT)” DLD geometry that is based on patterns associated with nanosphere lithography (NSL). Finite element simulations and preliminary experiments with 0.86 μm and 4.7 μm particles suggest effective separation capabilities of the HAT-DLD approach, marking an important first step toward new classes of nanoDLD arrays fabricated through bottom-up, self-assembly-based NSL. 
    more » « less
  4. This Letter reports ring-shaped photoacoustic (PA) tweezers that are capable of manipulating single or multiple micron-sized particles. By illuminating a thin layer of an optically absorptive liquid medium with a focused annular pulsed laser beam and a higher pulse repetition rate (e.g., 800 Hz), both acoustic radiation force and instantaneous vaporization repulsion are generated within a certain distance of the illumination region. This makes it possible to conduct continuous and versatile locomotion of single or multiple microparticles. In this Letter, interactions between two or more particles are demonstrated, such as separation, attachment, and grouping of microparticles. The PA tweezers combine some of the advantages of conventional optical and acoustic tweezers and are expected to be a useful alternative approach for the manipulation of microscale objects. 
    more » « less
  5. In situ direct laser writing ( is DLW) strategies that facilitate the printing of three-dimensional (3D) nanostructured components directly inside of, and fully sealed to, enclosed microchannels are uniquely suited for manufacturing geometrically complex microfluidic technologies. Recent efforts have demonstrated the benefits of using micromolding and bonding protocols for is DLW; however, the reliance on polydimethylsiloxane (PDMS) leads to limited fluidic sealing ( e.g. , operational pressures <50–75 kPa) and poor compatibility with standard organic solvent-based developers. To bypass these issues, here we explore the use of cyclic olefin polymer (COP) as an enabling microchannel material for is DLW by investigating three fundamental classes of microfluidic systems corresponding to increasing degrees of sophistication: (i) “2.5D” functionally static fluidic barriers (10–100 μm in height), which supported uncompromised structure-to-channel sealing under applied input pressures of up to 500 kPa; (ii) 3D static interwoven microvessel-inspired structures (inner diameters < 10 μm) that exhibited effective isolation of distinct fluorescently labelled microfluidic flow streams; and (iii) 3D dynamically actuated microfluidic transistors, which comprised bellowed sealing elements (wall thickness = 500 nm) that could be actively deformed via an applied gate pressure to fully obstruct source-to-drain fluid flow. In combination, these results suggest that COP-based is DLW offers a promising pathway to wide-ranging fluidic applications that demand significant architectural versatility at submicron scales with invariable sealing integrity, such as for biomimetic organ-on-a-chip systems and integrated microfluidic circuits. 
    more » « less