Abstract. Paleoceanographic interpretations of Plio-Pleistocene climate variability over the past 5 million years rely on the evaluation of event timing of proxy changes in sparse records across multiple ocean basins. In turn, orbital-scale chronostratigraphic controls for these records are often built from stratigraphic alignment of benthic foraminiferal stable oxygen isotope (δ18O) records to a preferred dated target stack or composite. This chronostratigraphic age model approach yields age model uncertainties associated with alignment method, target selection, the assumption that the undated record and target experienced synchronous changes in benthic foraminiferal δ18O values, and the assumption that any possible stratigraphic discontinuities within the undated record have been appropriately identified. However, these age model uncertainties and their impact on paleoceanographic interpretations are seldom reported or discussed. Here, we investigate and discuss these uncertainties for conventional manual and automated tuning techniques based on benthic foraminiferal δ18O records and evaluate their impact on sedimentary age models over the past 3.5 Myr using three sedimentary benthic foraminiferal δ18O records as case studies. In one case study, we present a new benthic foraminiferal δ18O record for International Ocean Discovery Program (IODP) Site U1541 (54°13′ S, 125°25′ W), recently recovered from the South Pacific on IODP Expedition 383. The other two case studies examine published benthic foraminiferal δ18O records of Ocean Drilling Program (ODP) Site 1090 and the ODP Site 980/981 composite. Our analysis suggests average age uncertainties of 3 to 5 kyr associated with manually derived versus automated alignment, 1 to 3 kyr associated with automated probabilistic alignment itself, and 2 to 6 kyr associated with the choice of tuning target. Age uncertainties are higher near stratigraphic segment ends and where local benthic foraminiferal δ18O stratigraphy differs from the tuning target. We conclude with recommendations for community best practices for the development and characterization of age uncertainty of sediment core chronostratigraphies based on benthic foraminiferal δ18O records.
more »
« less
Shell Reworking Impacts on Climate Variability Reconstructions Using Individual Foraminiferal Analyses
Abstract Particle mixing by benthic fauna beneath the sediment‐water interface (or bioturbation) fundamentally challenges the proxy based retrieval of past climatic conditions from deep‐sea sediment cores. Previous efforts targeted the impacts of bioturbation on the nature of paleoceanographic changes gleaned from the proxy record, whereas impacts on seasonal and/or interannual variability reconstructions have received less attention. We present TurbIFA (Tracking uncertainty of reworking & bioturbation on IFA), a software that adapts and combines existing algorithms to quantitatively estimate the impact of sediment reworking and other uncertainties and assess significance of ocean and climate variability reconstructions based on individual foraminiferal analyses (IFA). Building upon previous idealized investigations of bioturbation using hydroclimate‐sediment simulations, TurbIFA advances the IFA proxy system modeling such that users may directly assess the sensitivity of their data to various local parameters related to shell reworking across the global ocean. Using the output of state‐of‐the‐art coupled atmosphere‐ocean general circulation models, TurbIFA simulates planktic foraminiferal δ18O or Mg/Ca‐temperature signal carriers and evaluates uncertainties in the sample size, analytical protocols along with as those arising from bioturbation. Application of TurbIFA to synthetic and existing data sets indicates that the significance of IFA‐based reconstructions can be assessed once the impacts of sediment accumulation rates, sediment mixed layer depths, length of time integrated by the chosen IFA sampling interval, and changes in the amplitude of climate variability (i.e., the targeted environmental signal) are comprehensively evaluated. We contend that TurbIFA can aid quantitative assessments of past seasonal and interannual variability gleaned from the paleoceanographic record.
more »
« less
- Award ID(s):
- 1903482
- PAR ID:
- 10565346
- Publisher / Repository:
- Wiley/Zenodo
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 39
- Issue:
- 5
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Decades of observations show that the world's oceans have been losing oxygen, with far‐reaching consequences for ecosystems and biogeochemical cycling. To reconstruct oxygenation beyond the limited scope of instrumental records, proxy records are needed, such as sedimentary δ15N. We combine two δ15N records from the Santa Barbara Basin (SBB), a 24‐year‐long, biweekly sediment trap time series, and a 114‐year, high‐resolution sediment core together spanning the years 1892–2017. These records allow for the examination of δ15N variability on seasonal to centennial timescales. Seasonal variability in SBB δ15N is consistent in timing with the poleward advection of a high δ15N signal from the Eastern Tropical North Pacific in the summer and fall. Strong El Niño events result in variable δ15N signatures, reflective of local rainfall, and neither the Pacific Decadal Oscillation nor North Pacific Gyre Oscillation impose strong controls on bulk sedimentary δ15N. Seasonal and interannual variability in sediment trap δ13Corgis consistent with local productivity as a driver; however, this signal is not retained in the sediment core. The time series from the sediment trap and core show that bulk sedimentary δ15N in SBB has now exceeded that measured for the past 2,000 years. We hypothesize that the change in δ15N reflects the increasing influence of denitrified waters from the Eastern Tropical North Pacific and ongoing deoxygenation of the Eastern Pacific. When juxtaposed with other regional δ15N records our results further suggest that SBB is uniquely situated to record long‐term change in the Eastern Tropical North Pacific.more » « less
-
A framework for reconstructing marine heatwaves from individual foraminifera in sedimentary archivesSchijf, Johan (Ed.)Marine heatwaves (MHWs) are warm sea surface temperature (SST) anomalies with substantial ecological and economic consequences. Observations of MHWs are based on relatively short instrumental records, which limit the ability to forecast these events on decadal and longer timescales. Paleoclimate reconstructions can extend the observational record and help to evaluate model performance under near future conditions, but paleo-MHW reconstructions have received little attention, primarily because marine sediments lack the temporal resolution to record short-lived events. Individual foraminifera analysis (IFA) of paleotemperature proxies presents an intriguing opportunity to reconstruct past MHW variability if strong relationships exist between SST distributions and MHW metrics. Here, we describe a method to test this idea by systematically evaluating relationships between MHW metrics and SST distributions that mimic IFA data using a 2000-member linear inverse model (LIM) ensemble. Our approach is adaptable and allows users to define MHWs based on multiple duration and intensity thresholds and to model seasonal biases in five different foraminifera species. It also allows uncertainty in MHW reconstructions to be calculated for a given number of IFA measurements. An example application of our method at 12 north Pacific locations suggests that the cumulative intensity of short-duration, low-intensity MHWs is the strongest target for reconstruction, but that the error on reconstructions will rely heavily on sedimentation rate and the number of foraminifera analyzed. This is evident when a robust transfer function is applied to new core-top oxygen isotope data from 37 individualGlobigerina bulloidesat a site with typical marine sedimentation rates. In this example application, paleo-MHW reconstructions have large uncertainties that hamper comparisons to observational data. However, additional tests demonstrate that our approach has considerable potential to reconstruct past MHW variability at high sedimentation rate sites where hundreds of foraminifera can be analyzed.more » « less
-
Abstract The area density proxy of foraminiferal shell thickness and calcification intensity has the potential to provide information about past ocean CO2content and has the benefit of small sample requirements, simple analytical techniques, and the ability to re‐use the analyzed foraminifera for other paleo‐proxies. Using a series of multicore core‐tops collected from the southeastern Indian Ocean (1.8–3.8 km water depth), we evaluate the reliability of utilizing area density values ofGlobigerina bulloidesfrom sediment cores to estimate surface ocean carbonate parameters. Because foraminifera in marine sediments can rarely be considered “pristine” (or “glassy”), we grouped area density measurements of shells to designate various stages of diagenesis. Visual signs of alteration were apparent at area density values as low as ∼0.122 × 104 µg/µm2, with deviations from the “pristine” endmember beginning at area density values of ∼0.087 × 104 µg/µm2. We find that increases in area density overprint the surface ocean carbonate signature in thicker (>0.122 × 104 µg/µm2shells), but small increases associated with marine sedimentary burial and diagenesis can be accounted for, allowing this proxy to be applied back in time. Reconstructing the distribution of area density values in a given sample has the potential to provide valuable information on overall sample preservation by estimating the percent of well‐preserved shells (<0.122 × 104 µg/µm2; %wp) in a given sample. Our %wp metric has the potential for use as a proxy for lysocline variability in addition to assessing the suitability of marine sediment samples for surface ocean reconstructions.more » « less
-
Abstract The composition and preservation state of biogenic carbonate archives, such as foraminiferal tests, record ocean chemistry during the lifetime of the organism and post‐depositional changes in ambient conditions via carbonate compensation. Depending upon the specific paleoclimate proxy, post‐depositional processes, including dissolution, may alter original paleoenvironmental signals captured by the foraminifer's test composition. Accordingly, quantifying dissolution independent of geochemical measurements can improve proxy interpretation. Developing independent tools may also be useful for investigating whether changes in paleoclimatic conditions are associated with changes in seawater carbonate chemistry. Such approaches can be improved further if they are applied to individual foraminiferal tests, as specimen‐to‐specimen differences can record higher‐frequency environmental changes compared to conventional bulk‐scale analyses. Here, we combine individual foraminiferal carbon and oxygen isotopic analyses (IFA) with X‐ray MicroCT Scanning to generate paired analyses of test density (a proxy for the extent of post‐depositional dissolution) and isotopic composition. As a proof‐of‐concept application of this approach, we analyzeGlobigerina bulloidestests from both coretop and latest Miocene/earliest Pliocene‐aged sediment from Ocean Drilling Project (ODP) Site 1088 (Agulhas Ridge). Our measurements and mixing model calculations show that within‐population differences in carbon and oxygen isotopic ratios are largely independent of dissolution extent. By comparing population averages from coretop and downcore sediments, we find that lower oxygen isotopic ratios (likely driven by higher calcification temperatures) are associated with greater extents of dissolution at ODP Site 1088. We interpret this finding to reflect coupled changes in carbonate chemistry and climatic conditions over million‐year timescales.more » « less
An official website of the United States government

