skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating binary black hole mergers using discontinuous Galerkin methods
Abstract Binary black holes are the most abundant source of gravitational-wave observations. Gravitational-wave observatories in the next decade will require tremendous increases in the accuracy of numerical waveforms modeling binary black holes, compared to today’s state of the art. One approach to achieving the required accuracy is using spectral-type methods that scale to many processors. Using theSpECTREnumerical-relativity (NR) code, we present the first simulations of a binary black hole inspiral, merger, and ringdown using discontinuous Galerkin (DG) methods. The efficiency of DG methods allows us to evolve the binary through ∼ 18 orbits at reasonable computational cost. We then useSpECTRE’s Cauchy Characteristic Evolution (CCE) code to extract the gravitational waves at future null infinity. The open-source nature ofSpECTREmeans this is the first time a spectral-type method for simulating binary black hole evolutions is available to the entire NR community.  more » « less
Award ID(s):
2308615 2209655 2219109 2208014 2407742 2309211 2209656
PAR ID:
10565353
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
42
Issue:
3
ISSN:
0264-9381
Format(s):
Medium: X Size: Article No. 035001
Size(s):
Article No. 035001
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics, enable direct assessment of the numerical accuracy, and support the reproducibility of results. In this article, we use the open-sourceSpECTREnumerical relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate thatSpECTREachieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors. 
    more » « less
  2. Abstract Errors due to imperfect boundary conditions in numerical relativity simulations of binary black holes (BBHs) can produce unphysical reflections of gravitational waves which compromise the accuracy of waveform predictions, especially for subdominant modes. A system of higher order absorbing boundary conditions which greatly reduces this problem was introduced in earlier work (Buchman and Sarbach 2006Class. Quantum Grav.236709). In this paper, we devise two new implementations of this boundary condition system in the Spectral Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling mass ratio 7:1 BBH simulations. One of our implementations in particular is shown to be extremely robust and to produce accuracy superior to the standard freezing-Ψ0boundary condition usually used bySpEC. 
    more » « less
  3. Abstract Accurate modelling of black hole binaries is critical to achieve the science goals of gravitational-wave detectors. Modelling such configurations relies strongly on calibration to numerical-relativity (NR) simulations. Binaries on quasi-circular orbits have been widely explored in NR, however, coverage of the broader 9-dimensional parameter space, including orbital eccentricity, remains sparse. This article develops a new procedure to control orbital eccentricity of binary black hole simulations that enables choosing initial data parameters with precise control over eccentricity and mean anomaly of the subsequent evolution, as well as the coalescence time. We then calculate several sequences of NR simulations that nearly uniformly cover the 2-dimensional eccentricity--mean anomaly space for equal mass, non-spinning binary black holes. We demonstrate that, for fixed eccentricity, many quantities related to the merger dynamics of binary black holes show an oscillatory dependence on mean anomaly. The amplitude of these oscillations scales nearly linearly with the eccentricity of the system. We find that for the eccentricities explored in this work, the magnitude of deviations in various quantities such as the merger amplitude and peak luminosity can approach $$\sim5\%$$ of their quasi-circular value. We use our findings to explain eccentric phenomena reported in other studies. We also show that methods for estimating the remnant mass employed in the effective-one-body approach exhibit similar deviations, roughly matching the amplitude of the oscillations we find in NR simulations. This work is an important step towards a complete description of eccentric binary black hole mergers, and demonstrates the importance of considering the entire 2-dimensional parameter subspace related to eccentricity. 
    more » « less
  4. Abstract Next-generation gravitational wave detectors such as Cosmic Explorer, the Einstein Telescope, and LISA, demand highly accurate and extensive gravitational wave (GW) catalogs to faithfully extract physical parameters from observed signals. However, numerical relativity (NR) faces significant challenges in generating these catalogs at the required scale and accuracy on modern computers, as NR codes do not fully exploit modern GPU capabilities. In response, we extend NRPy, a Python-based NR code-generation framework, to develop NRPyEllipticGPU—a CUDA-optimized elliptic solver tailored for the binary black hole (BBH) initial data problem. NRPyEllipticGPU is the first GPU-enabled elliptic solver in the NR community, supporting a variety of coordinate systems and demonstrating substantial performance improvements on both consumer-grade and HPC-grade GPUs. We show that, when compared to a high-end CPU, NRPyEllipticGPU achieves on a high- end GPU up to a sixteenfold speedup in single precision while increasing double- precision performance by a factor of 2–4. This performance boost leverages the GPU’s superior parallelism and memory bandwidth to achieve a compute-bound application and enhancing the overall simulation efficiency. As NRPyEllipticGPU shares the core infrastructure common to NR codes, this work serves as a practical guide for developing full, CUDA-optimized NR codes. 
    more » « less
  5. Abstract Over a hundred gravitational-wave (GW) detections and candidates have been reported from the first three observing runs of the Advanced LIGO-Virgo-KAGRA (LVK) detectors. Among these, the most intriguing events are binary black hole mergers that result in a “lite” intermediate-mass black hole (IMBH) of ∼102M, such as GW170502 and GW190521. In this study, we investigate 11 GW candidates from LVK’s third observing run with total detector-frame masses in the lite IMBH range. Using the Bayesian inference algorithmRIFT, we systematically analyze these candidates with three state-of-the-art waveform models that incorporate higher harmonics, which are crucial for resolving lite IMBHs in LVK data. For each candidate, we infer the premerger and postmerger black hole masses in the source frame, along with black hole spin projections across all three models. Under the assumption that these are binary black hole mergers, our analysis finds that five have a postmerger lite IMBH with masses ranging from 110 to 350Mwith over 90% confidence interval. Additionally, we note that one of their premerger black holes is within the pair-instability supernova mass gap (60–120M), and two premerger black holes are above the mass gap. Furthermore, we report discrepancies among the three waveform models in intrinsic parameters, with at least three GW candidates showing deviations beyond accepted statistical limits. While the astrophysical certainty of these candidates cannot be established, our study provides a foundation to probe the lite IMBH population that emerge within the low-frequency noise spectrum of LVK detectors. 
    more » « less