skip to main content


Search for: All records

Award ID contains: 2308615

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics, enable direct assessment of the numerical accuracy, and support the reproducibility of results. In this article, we use the open-sourceSpECTREnumerical relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate thatSpECTREachieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Abstract Detectable electromagnetic counterparts to gravitational waves from compact binary mergers can be produced by outflows from the black hole-accretion disk remnant during the first 10 s after the merger. Two-dimensional axisymmetric simulations with effective viscosity remain an efficient and informative way to model this late-time post-merger evolution. In addition to the inherent approximations of axisymmetry and modeling turbulent angular momentum transport by a viscosity, previous simulations often make other simplifications related to the treatment of the equation of state and turbulent transport effects. In this paper, we test the effect of these modeling choices. By evolving with the same viscosity the exact post-merger initial configuration previously evolved in Newtonian viscous hydrodynamics, we find that the Newtonian treatment provides a good estimate of the disk ejecta mass but underestimates the outflow velocity. We find that the inclusion of heavy nuclei causes a notable increase in ejecta mass. An approximate inclusion of r-process effects has a comparatively smaller effect, except for its designed effect on the composition. Diffusion of composition and entropy, modeling turbulent transport effects, has the overall effect of reducing ejecta mass and giving it a speed with lower average and more tightly-peaked distribution. Also, we find significant acceleration of outflow even at distances beyond 10 000 km, so that thermal wind velocities only asymptote beyond this radius and at higher values than often reported. 
    more » « less