Recent advancements in additive manufacturing such as Direct Write Inkjet printing introduced novel tools that allow controlled and precise deposition of fluid in nano-liter volumes, enabling fabrication of multiscale structures with submillimeter dimensions. Applications include fabrication of flexible electronics, sensors, and assembly of Micro-Electro-Mechanical Systems (MEMS). Critical challenges remain in the control of fluid deposition parameters during Inkjet printing to meet specific dimensional footprints at the microscale necessary for the assembly process of microscale structures. In this paper we characterize an adhesive deposition printing process with a piezo-electric dispenser of nano-liter volumes. Applications include the controlled delivery of high viscosity Ultraviolet (UV) and thermal curable adhesives for the assembly of the MEMS structures. We applied the Taguchi Design of Experiment (DOE) method to determine an optimal set of process parameters required to minimize the size of adhesive printed features on a silicon substrate with good reliability and repeatability of the deposition process. Experimental results demonstrate repeatable deposition of UV adhesive features with 150 μm diameter on the silicon substrate. Based on the observed wettability effect of adhesive printed onto different substrates we propose a solution for further reduction of the deposit-substrate contact area for microassembly optimization.
more »
« less
This content will become publicly available on December 13, 2025
Heat-Depolymerizable Tethers for Microelectromechanical System Assembly
Microelectromechanical systems (MEMS) assembly into packages that interface with the environment is critical in electronic sensor applications ranging from soft biomedical systems to telecommunications. This article presents a novel process using heat-depolymerizable polyethylene carbonate (QPAC-25) as a sacrificial tether, and demonstrates it for assembling waferbound MEMS onto wires. The assembly mechanism is thermal removal of the tether, allowing a strained layer to pop up from the substrate and make electrical and mechanical contact with the wire. We detail the QPAC-25 fabrication procedures, characterize the relationship between QPAC-25 thickness and spin speed and determine a route to pattern QPAC-25 without a metal hard mask or photosensitizers
more »
« less
- Award ID(s):
- 2309482
- PAR ID:
- 10565613
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- Journal of Microelectromechanical Systems
- ISSN:
- 1057-7157
- Page Range / eLocation ID:
- 1 to 3
- Subject(s) / Keyword(s):
- MEMS polymer patterning sensor packaging sacrificial layer photolithography
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Microassembly systems utilizing precision robotics have long been used for realizing three-dimensional microstructures such as microsystems and microrobots. Prior to assembly, microscale components are fabricated using micro-electromechanical-system (MEMS) technology. The microassembly system then directs a microgripper through a series of automated or human-controlled pick-and-place operations. In this paper, we describe a novel custom microassembly system, named NEXUS, that can be used to prototype MEMS microrobots. The NEXUS integrates multi-degrees-of-freedom (DOF) precision positioners, microscope computer vision, and microscale process tools such as a microgripper and vacuum tip. A semi-autonomous human–machine interface (HMI) was programmed to allow the operator to interact with the microassembly system. The NEXUS human–machine interface includes multiple functions, such as positioning, target detection, visual servoing, and inspection. The microassembly system's HMI was used by operators to assemble various three-dimensional microrobots such as the Solarpede, a novel light-powered stick-and-slip mobile microcrawler. Experimental results are reported in this paper to evaluate the system's semi-autonomous capabilities in terms of assembly rate and yield and compare them to purely teleoperated assembly performance. Results show that the semi-automated capabilities of the microassembly system's HMI offer a more consistent assembly rate of microrobot components and are less reliant on the operator's experience and skill.more » « less
-
Fabrics and fibrous materials offer a soft, porous, and flexible substrate for microelectromechanical systems (MEMS) packaging in breathable, wearable formats that allow airflow. Device-on-fiber systems require developments in the field of E-Textiles including smart fibers, functional fiber intersections, textile circuit routing, and alignment methods that adapt to irregular materials. In this paper, we demonstrate a MEMS-on-fabric layout workflow that obtains fiber intersection locations from high-resolution fabric images. We implement an image processing algorithm to drive the MEMS layout software, creating an individualized MEMS “gripper” layout designed to grasp fibers on a specific fabric substrate during a wafer-to-fabric parallel transfer step. The efficiency of the algorithm in terms of a number of intersections identified on the complete image is analyzed. The specifications of the MEMS layout design such as the length of the MEMS gripper, spatial distribution, and orientation are derivable from the MATLAB routine implemented on the image. Furthermore, the alignment procedure, tolerance, and hardware setup for the alignment method of the framed sample fabric to the wafer processed using the custom gripper layout are discussed along with the challenges of the release of MEMS devices from the Si substrate to the fabric substrate.more » « less
-
Packaging electronic devices within electronic textiles and fibrous substrates requires an understanding of how fibers interact with circuit components in different operating conditions. In this paper, we use microeletromechanical (MEMS) devices to put devices in electrical contact with fine wires. We characterize the electronic properties of MEMS-to-wire contacts and discuss general guidelines for optimizing the design of these grippers and potential MEMS-based circuits. We then demonstrate how these grippers can act as non-rigid circuit components that effectively transfer power to devices such as LEDs. Analysis shows that our grippers are suitable conductors (under 150 Ohms) under standard operating temperatures (25-100 deg. C) with potential for use as sensors for current overflow or temperature. Methods such as parylene deposition and silver epoxy to stabilize MEMS performance are briefly discussed and explored.more » « less
-
Dumbbell- and bola-shaped amphiphiles are commonly expected to self-assemble into vesicles with condensed hydrophobic domains due to the dominant hydrophobic interaction. In this work, we examined the assemblies of the dumbbell-shaped AC60-AC60 amphiphile, with two carboxylic acid-functionalized fullerenes (AC60) polar head groups linked by an organic tether, and found that they assemble into hollow, spherical blackberry-type structures with porous surfaces, judged by their smaller assemblies in organic solvents with higher polarity and in aqueous solutions with high pH. We attribute the formation of blackberry structures to the organic tether that may be too short to fill up a condensed hydrophobic domain, as confirmed by all-atom simulations. This is further proved by noticing that several bola-type macromolecules with hydrophilic polyethylene glycol (PEG) chain being the linker and no hydrophobic components, AC60-PEG-AC60, can also self-assemble into hollow, spherical assemblies and demonstrate similar pH response as the assemblies from AC60-AC60 dumbbells. Therefore, we conclude that the driving force of the self-assembly for these dumbbell- or bola-shaped molecules is counterion-mediated attraction from the two AC60 head groups rather than the hydrophobic interaction due to the organic linkers. The so-formed blackberry structures here, as well-studied before in other systems, possess porous surfaces, making these charged amphiphiles a valuable model for designing stable nanocontainers with controllable porosity to the change of environment.more » « less
An official website of the United States government
