skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Review of Motion Data Privacy in Virtual Reality
As the metaverse grows with the advances of new technologies, a number of researchers have raised the concern on the privacy of motion data in virtual reality (VR). It is becoming clear that motion data can reveal essential information of people, such as user identification. However, the fundamental problems about what types of motion data, how to process, and on what ranges of VR applications are still underexplored. This work summarizes the work of motion data privacy on these aspects from both the fields of VR and data privacy. Our results demonstrate that researchers from both fields have recognized the importance of the problem, while there are differences due to the focused problems. A variety of VR studies have been used for user identification, and the results are affected by the application types and ranges of involved actions. We also review the biometrics work from related fields including the behaviors of keystrokes and waist as well as data of skeleton, face and fingerprint. At the end, we discuss our findings and suggest future work to protect the privacy of motion data.  more » « less
Award ID(s):
1840080
PAR ID:
10565631
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE International Conference on Meta Computing
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging Virtual Reality (VR) displays with embedded eye trackers are currently becoming a commodity hardware (e.g., HTC Vive Pro Eye). Eye-tracking data can be utilized for several purposes, including gaze monitoring, privacy protection, and user authentication/identification. Identifying users is an integral part of many applications due to security and privacy concerns. In this paper, we explore methods and eye-tracking features that can be used to identify users. Prior VR researchers explored machine learning on motion-based data (such as body motion, head tracking, eye tracking, and hand tracking data) to identify users. Such systems usually require an explicit VR task and many features to train the machine learning model for user identification. We propose a system to identify users utilizing minimal eye-gaze-based features without designing any identification-specific tasks. We collected gaze data from an educational VR application and tested our system with two machine learning (ML) models, random forest (RF) and k-nearest-neighbors (kNN), and two deep learning (DL) models: convolutional neural networks (CNN) and long short-term memory (LSTM). Our results show that ML and DL models could identify users with over 98% accuracy with only six simple eye-gaze features. We discuss our results, their implications on security and privacy, and the limitations of our work. 
    more » « less
  2. Virtual reality (VR) platforms enable a wide range of applications, however, pose unique privacy risks. In particular, VR devices are equipped with a rich set of sensors that collect personal and sensitive information (e.g., body motion, eye gaze, hand joints, and facial expression). The data from these newly available sensors can be used to uniquely identify a user, even in the absence of explicit identifiers. In this paper, we seek to understand the extent to which a user can be identified based solely on VR sensor data, within and across real-world apps from diverse genres. We consider adversaries with capabilities that range from observing APIs available within a single app (app adversary) to observing all or selected sensor measurements across multiple apps on the VR device (device adversary). To that end, we introduce BehaVR, a framework for collecting and analyzing data from all sensor groups collected by multiple apps running on a VR device. We use BehaVR to collect data from real users that interact with 20 popular real-world apps. We use that data to build machine learning models for user identification within and across apps, with features extracted from available sensor data. We show that these models can identify users with an accuracy of up to 100%, and we reveal the most important features and sensor groups, depending on the functionality of the app and the adversary. To the best of our knowledge, BehaVR is the first to analyze user identification in VR comprehensively, i.e., considering all sensor measurements available on consumer VR devices, collected by multiple real-world, as opposed to custom-made, apps. 
    more » « less
  3. Eye-tracking is a critical source of information for understanding human behavior and developing future mixed-reality technology. Eye-tracking enables applications that classify user activity or predict user intent. However, eye-tracking datasets collected during common virtual reality tasks have also been shown to enable unique user identification, which creates a privacy risk. In this paper, we focus on the problem of user re-identification from eye-tracking features. We adapt standardized privacy definitions of k-anonymity and plausible deniability to protect datasets of eye-tracking features, and evaluate performance against re-identification by a standard biometric identification model on seven VR datasets. Our results demonstrate that re-identification goes down to chance levels for the privatized datasets, even as utility is preserved to levels higher than 72% accuracy in document type classification. 
    more » « less
  4. Android mobile applications collect information in various ways to provide users with functionalities and services. An Android app's permission manifest and privacy policy are documents that provide users with guidelines about what information type is being collected. However, the information types mentioned in these files are often abstract and does not include the fine grained information types being collected through user input fields in applications. Existing approaches focus on API calls in the application code and are able to reveal what information types are being collected. However, they are unable to identify the information types based on direct user input as a major source of private information. In this paper, we propose to direct apply natural language processing approach to Android layout code to identify information types associated with input fields in applications. 
    more » « less
  5. The immersive nature of Virtual Reality (VR) and its reliance on sensory devices like head-mounted displays introduce privacy risks to users. While earlier research has explored users' privacy concerns within VR environments, less is known about users' comprehension of VR data practices and protective behaviors; the expanding VR market and technological progress also necessitate a fresh evaluation. We conducted semi-structured interviews with 20 VR users, showing their diverse perceptions regarding the types of data collected and their intended purposes. We observed privacy concerns in three dimensions: institutional, social, and device-specific. Our participants sought to protect their privacy through considerations when selecting the device, scrutinizing VR apps, and selective engagement in different VR interactions. We contrast our findings with observations from other technologies and ecosystems, shedding light on how VR has altered the privacy landscape for end-users. We further offer recommendations to alleviate users' privacy concerns, rectify misunderstandings, and encourage the adoption of privacy-conscious behaviors. 
    more » « less