skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building epsilon near zero materials from layered uniaxial metamaterials
Recently, there has been an explosion of activity in the fields of optics and photonics with the advent of fabrication techniques which enable the design of metamaterials which possess properties not encountered in the natural world. In this work, we are concerned with zero permittivity materials and a new scheme to design metamaterials for which all components of the dielectric tensor are approximately zero. Our approach involves the alternate layering of many, very thin, slices of two constituent metamaterials, a uniaxial layered medium and a uniaxial nanowire array. With a simple optimization strategy we demonstrate a candidate configuration which very nearly satisfies our design goal of zero permittivity.  more » « less
Award ID(s):
2111283
PAR ID:
10565846
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
33
Issue:
1
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 1329
Size(s):
Article No. 1329
Sponsoring Org:
National Science Foundation
More Like this
  1. Metamaterials are artificially engineered structures that have unique properties not usually found in natural materials, such as negative refractive index. Conventional interferometry or ellipsometry is generally used for characterizing the optical properties of metamaterials. Here, we report an alternative optical vortex based interferometric approach for the characterization of the effective parameters of optical metamaterials by directly measuring the transmission and reflection phase shifts from metamaterials according to the rotation of vortex spiral interference pattern. The fishnet metamaterials possessing positive, zero and negative refractive indices are characterized with the vortex based interferometry to precisely determine the complex values of effective permittivity, permeability, and refractive index. Our results will pave the way for the advancement of new spectroscopic and interferometric techniques to characterize optical metamaterials, metasurfaces, and nanostructured thin films in general. 
    more » « less
  2. Abstract Electromagnetic metamaterials, which are a major type of artificially engineered materials, have boosted the development of optical and photonic devices due to their unprecedented and controllable effective properties, including electric permittivity and magnetic permeability. Metamaterials consist of arrays of subwavelength unit cells, which are also known as meta-atoms. Importantly, the effective properties of metamaterials are mainly determined by the geometry of the constituting subwavelength unit cells rather than their chemical composition, enabling versatile designs of their electromagnetic properties. Recent research has mainly focused on reconfigurable, tunable, and nonlinear metamaterials towards the development of metamaterial devices, namely, metadevices, via integrating actuation mechanisms and quantum materials with meta-atoms. Microelectromechanical systems (MEMS), or microsystems, provide powerful platforms for the manipulation of the effective properties of metamaterials and the integration of abundant functions with metamaterials. In this review, we will introduce the fundamentals of metamaterials, approaches to integrate MEMS with metamaterials, functional metadevices from the synergy, and outlooks for metamaterial-enabled photonic devices. 
    more » « less
  3. Abstract Designing and printing metamaterials with customizable architectures enables the realization of unprecedented mechanical behaviors that transcend those of their constituent materials. These behaviors are recorded in the form of response curves, with stress-strain curves describing their quasi-static footprint. However, existing inverse design approaches are yet matured to capture the full desired behaviors due to challenges stemmed from multiple design objectives, nonlinear behavior, and process-dependent manufacturing errors. Here, we report a rapid inverse design methodology, leveraging generative machine learning and desktop additive manufacturing, which enables the creation of nearly all possible uniaxial compressive stress‒strain curve cases while accounting for process-dependent errors from printing. Results show that mechanical behavior with full tailorability can be achieved with nearly 90% fidelity between target and experimentally measured results. Our approach represents a starting point to inverse design materials that meet prescribed yet complex behaviors and potentially bypasses iterative design-manufacturing cycles. 
    more » « less
  4. We report the real-valued static and complex-valued quasi-static anisotropic permittivity parameters of rare-earth scandate orthorhombic single crystal GdScO3 (GSO), TbScO3 (TSO), and DyScO3 (DSO). Employing continuous-wave terahertz spectroscopy (0.2–1 THz), the complex permittivity was extracted using an anisotropic ambient-film-ambient model. Data obtained from multiple samples of the same oxides and different surface cuts were analyzed simultaneously. The zero-frequency limit of the modeled data indicates that at room temperature the real part of the dielectric tensor components for GSO are ɛa = 22.7, ɛb = 19.3, and ɛc = 28.1; for DSO, ɛa = 20.3, ɛb = 17.4, and ɛc = 31.1; and for TSO, ɛa = 21.6, ɛb = 18.1, and ɛc = 30.3, with a, b, and c crystallographic axes constituting the principal directions for the permittivity tensor. These results are in excellent agreement with expectations from theoretical computations and with scarcely available data from previous experimental studies. Furthermore, our results evidence a noticeable attenuation, which increases with frequency, and are very significant especially at the higher frequency end of the measurement and along the c-direction in all samples. We suggest the attenuation is most likely caused by the onset of absorption due to long-wavelength active optical phonon modes. These results are important for electronic and potential sub-terahertz applications (e.g., quarter-wave plate) benefiting from the large index contrast along different directions in these materials. 
    more » « less
  5. Abstract Advanced mechanical metamaterials with unusual thermal expansion properties represent an area of growing interest, due to their promising potential for use in a broad range of areas. In spite of previous work on metamaterials with large or ultralow coefficient of thermal expansion (CTE), achieving a broad range of CTE values with access to large thermally induced dimensional changes in structures with high filling ratios remains a key challenge. Here, design concepts and fabrication strategies for a kirigami‐inspired class of 2D hierarchical metamaterials that can effectively convert the thermal mismatch between two closely packed constituent materials into giant levels of biaxial/uniaxial thermal expansion/shrinkage are presented. At large filling ratios (>50%), these systems offer not only unprecedented negative and positive biaxial CTE (i.e., −5950 and 10 710 ppm K−1), but also large biaxial thermal expansion properties (e.g., > 21% for 20 K temperature increase). Theoretical modeling of thermal deformations provides a clear understanding of the microstructure–property relationships and serves as a basis for design choices for desired CTE values. An Ashby plot of the CTE versus density serves as a quantitative comparison of the hierarchical metamaterials presented here to previously reported systems, indicating the capability for substantially enlarging the accessible range of CTE. 
    more » « less