Modern vehicles can be thought of as complex distributed embedded systems that run a variety of automotive applications with real-time constraints. Recent advances in the automotive industry towards greater autonomy are driving vehicles to be increasingly connected with various external systems (e.g., roadside beacons, other vehicles), which makes emerging vehicles highly vulnerable to cyber-attacks. Additionally, the increased complexity of automotive applications and the in-vehicle networks results in poor attack visibility, which makes detecting such attacks particularly challenging in automotive systems. In this work, we present a novel anomaly detection framework called LATTE to detect cyber-attacks in Controller Area Network (CAN) based networks within automotive platforms. Our proposed LATTE framework uses a stacked Long Short Term Memory (LSTM) predictor network with novel attention mechanisms to learn the normal operating behavior at design time. Subsequently, a novel detection scheme (also trained at design time) is used to detect various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE framework under different automotive attack scenarios and present a detailed comparison with the best-known prior works in this area, to demonstrate the potential of our approach.
more »
« less
Graph Machine Learning based Cyber Attack Detection for Mobile Tactical Networks
First responders and other tactical teams rely on mo- bile tactical networks to coordinate and accomplish emergent time- critical tasks. The information exchanged through these networks is vulnerable to various strategic cyber network attacks. Detecting and mitigating them is a challenging problem due to the volatile and mobile nature of an ad hoc environment. This paper proposes MalCAD, a graph machine learning-based framework for detecting cyber attacks in mobile tactical software-defined networks. Mal- CAD operates based on observing connectivity features among various nodes obtained using graph theory, instead of collecting information at each node. The MalCAD framework is based on the XGBOOST classification algorithm and is evaluated for lost versus wasted connectivity and random versus targeted cyber attacks. Results show that, while the initial cyber attacks create a loss of 30%–60% throughput, MalCAD results in a gain of average throughput by 25%–50%, demonstrating successful attack mitigation.
more »
« less
- Award ID(s):
- 1738420
- PAR ID:
- 10565873
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2181-4
- Page Range / eLocation ID:
- 170 to 175
- Format(s):
- Medium: X
- Location:
- Boston, MA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms a single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks.more » « less
-
null (Ed.)In recent years, smart grid communications (SGC) has evolved to use new technologies not only for data delivery but also for enhanced smart grid (SG) security and reliability. Software Defined Networks (SDN) has proved to be a reliable and efficient architecture for handling diverse communication systems due to their ability to divide responsibilities of the network using control plane and data plane. This paper presents a graph learning approach for detecting and identifying Distributed Denial of Service (DDoS) attacks in SDN-SGC systems (GLASS). GLASS is a two phase framework that (1) detects if SDN-SGC is under DDoS attack using supervised graph deep learning and then (2) identifies the compromised entities using unsupervised learning methods. Network performance statistics are used for modeling SDN-SGC graphs, which train Graph Convolutional Neural Networks (GCN) to extract latent representations caused by DDoS attacks. Finally, spectral clustering is used to identify compromised entities. The experimental results, obtained by analysis of an IEEE 118-bus system, show the average throughput for compromised entities is able to maintain 84% of normal traffic level with GLASS, compared to achieving only 4% of normal throughput caused by DDoS attacks on compromised entities without the GLASS framework.more » « less
-
Cyber-physical systems are vulnerable to a variety of cyber, physical and cyber-physical attacks. The security of cyber-physical systems can be enhanced beyond what can be achieved through firewalls and trusted components by building trust from observed and/or expected behaviors. These behaviors can be encoded as invariants. Information flows that do not satisfy the invariants are used to identify and isolate malfunctioning devices and cyber intrusions. However, the distributed architectures of cyber-physical systems often contain multiple access points that are physically and/or digitally linked. Thus, invariants may be difficult to determine and/or computationally prohibitive to check in real time. Researchers have employed various methods for determining the invariants by analyzing the designs of and/or data generated by cyber-physical systems such as water treatment plants and electric power grids. This chapter compares the effectiveness of detecting attacks on a water treatment plant using design-centric invariants versus data-centric rules, the latter generated using a variety of data mining methods. The methods are compared based on the maximization of true positives and minimization of false positives.more » « less
-
null (Ed.)The implementation of Internet of Things (IoT) devices in medical environments, has introduced a growing list of security vulnerabilities and threats. The lack of an extensible big data resource that captures medical device vulnerabilities limits the use of Artificial Intelligence (AI) based cyber defense systems in capturing, detecting, and preventing known and future attacks. We describe a system that generates a repository of Cyber Threat Intelligence (CTI) about various medical devices and their known vulnerabilities from sources such as manufacturer and ICS-CERT vulnerability alerts. We augment the intelligence repository with data sources such as Wikidata and public medical databases. The combined resources are integrated with threat intelligence in our Cybersecurity Knowledge Graph (CKG) from previous research. The augmented graph embeddings are useful in querying relevant information and can help in various AI assisted cybersecurity tasks. Given the integration of multiple resources, we found the augmented CKG produced higher quality graph representations. The augmented CKG produced a 31% increase in the Mean Average Precision (MAP) value, computed over an information retrieval task.more » « less
An official website of the United States government

