Abstract The prospect of realizing highly entangled states on quantum processors with fundamentally different hardware geometries raises the question: to what extent does a state of a quantum spin system have an intrinsic geometry? In this paper, we propose that both states and dynamics of a spin system have a canonically associatedcoarse geometry, in the sense of Roe, on the set of sites in the thermodynamic limit. For a state$$\phi $$ on an (abstract) spin system with an infinite collection of sitesX, we define a universal coarse structure$$\mathcal {E}_{\phi }$$ on the setXwith the property that a state has decay of correlations with respect to a coarse structure$$\mathcal {E}$$ onXif and only if$$\mathcal {E}_{\phi }\subseteq \mathcal {E}$$ . We show that under mild assumptions, the coarsely connected completion$$(\mathcal {E}_{\phi })_{con}$$ is stable under quasi-local perturbations of the state$$\phi $$ . We also develop in parallel a dynamical coarse structure for arbitrary quantum channels, and prove a similar stability result. We show that several order parameters of a state only depend on the coarse structure of an underlying spatial metric, and we establish a basic compatibility between the dynamical coarse structure associated with a quantum circuit$$\alpha $$ and the coarse structure of the state$$\psi \circ \alpha $$ where$$\psi $$ is any product state.
more »
« less
“Fine synergies” describe motor adaptation in people with drop foot in a way that supplements traditional “coarse synergies”
Synergy analysis via dimensionality reduction is a standard approach in biomechanics to capture the dominant features of limb kinematics or muscle activation signals, which can be called “coarse synergies.” Here we demonstrate that the less dominant features of these signals, which are often explicitly disregarded or considered noise, can nevertheless exhibit “fine synergies” that reveal subtle, yet functionally important, adaptations. To find the coarse synergies, we applied non-negative matrix factorization (NMF) to unilateral EMG data from eight muscles of the involved leg in ten people with drop-foot (DF), and of the right leg of 16 unimpaired (control) participants. We then extracted the fine synergies for each group by removing the coarse synergies (i.e., first two factors explaining 85% of variance) from the data and applying Principal Component Analysis (PCA) to those residuals. Surprisingly, the time histories and structure of the coarse EMG synergies showed few differences between DF and controls—even though the kinematics of drop-foot gait is evidently different from unimpaired gait. In contrast, the structure of the fine EMG synergies (as per their PCA loadings) showed significant differences between groups. In particular, loadings forTibialis Anterior,Peroneus Longus,Gastrocnemius Lateralis,BicepsandRectus Femoris,Vastus MedialisandLateralismuscles differed between groups ( ). We conclude that the multiple differences found in the structure of the fine synergies extracted from EMG in people with drop-foot vs. unimpaired controls—not visible in the coarse synergies—likely reflect differences in their motor strategies. Coarse synergies, in contrast, seem to mostly reflect the gross features of EMG in bipedal gait that must be met by all participants—and thus show few differences between groups. However, drawing insights into the clinical origin of these differences requires well-controlled clinical trials. We propose that fine synergies should not be disregarded in biomechanical analysis, as they may be more informative of the disruption and adaptation of muscle coordination strategies in participants due to drop-foot, age and/or other gait impairments.
more »
« less
- Award ID(s):
- 2113096
- PAR ID:
- 10565896
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Sports and Active Living
- Volume:
- 5
- ISSN:
- 2624-9367
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper proposes and investigates the two-grid stabilized lowest equal-order finite element method for the time-independent dual-permeability-Stokes model with the Beavers-Joseph-Saffman-Jones interface conditions. This method is mainly based on the idea of combining the two-grid and the two local Gauss integrals for the dual-permeability-Stokes system. In this technique, we use a difference between a consistent mass matrix and an under-integrated mass matrix for the pressure variable of the dual-permeability-Stokes model using the lowest equal-order finite element quadruples. In the two-grid scheme, the global problem is solved using the standard$$ P_1-P_1-P_1-P_1 $$ finite element approximations only on a coarse grid with grid sizeH. Then, a coarse grid solution is applied on a fine grid of sizehto decouple the interface terms and the mass exchange terms for solving the three independent subproblems such as the Stokes equations, microfracture equations, and the matrix equations on the fine grid. On the other hand, microfracture and matrix equations are decoupled through the mass exchange terms. The weak formulation is reported, and the optimal error estimate is derived for the two-grid schemes. Furthermore, the numerical results validate that the two-grid stabilized lowest equal-order finite element method is effective and has the same accuracy as the coupling scheme when we choose$$ h=H^2 $$ .more » « less
-
Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. EMG was recorded from eight hand-forearm muscles in nine healthy individuals. Modularity was defined using non-negative matrix factorization to identify low rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies as a set, and individually, revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both datasets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest a cortical role in combining corticospinal connectivity to individual intrinsic hand muscles with modular mulit-muscle activation via synergies.more » « less
-
Abstract Objective.In vivoimaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness ( ), substrate shear stiffness ( ), shear anisotropy ( ), and tensile anisotropy ( ) of the gastrocnemius muscle in response to both passive and active tension.Main results. In passive tension, we found a significant increase in and with increasing muscle length. While in active tension, we observed increasing and decreasing and during active dorsiflexion and plantarflexion—indicating less anisotropy—with greater effects when the muscles act as agonist.Significance. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction.more » « less
-
Abstract Introduction: We present an extensive theoretical investigation of the electron impact excitation of doubly-ionized titanium (Ti III) to meet the needs of spectral analysis and plasma modeling. OBJECTIVES: The main objective of this work is to extend the currently scarce database of both structure and collision data for Ti III. METHODS: The calculation was performed in the close-coupling approximation using theB-splineR-matrix method. The multi-configuration Hartree–Fock method in combination withB-spline configuration interaction expansions and the non-orthogonal orbitals technique is employed for accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target states. Relativistic effects are treated at the semi-relativistic Breit-Pauli approximation level. RESULTS: The present close-coupling expansion includes 138 fine-structure levels of Ti III belonging to the , , , ( ), ( ), , and configurations. Comprehensive sets of radiative and electron collisional data are reported for all of the possible transitions between the 138 fine-structure levels. Thermally averaged collision strengths are determined using a Maxwellian distribution for a wide range of temperatures from K to K. The accuracy of the calculated radiative parameters is validated by comparing with available values from the NIST database and previous literature. CONCLUSION: Given the lack of sufficient currently available experimental and theoretical data, the electron impact excitation cross sections of the Ti III fine-structure levels presented here are systematic, extensive, and internally consistent, thus making them suitable for many modeling applications.more » « less
An official website of the United States government

