Understanding the fate and transport of per- and polyfluoroalkyl substances (PFAS) at contaminated sites is crucial for effective remedial and regulatory decision-making. This interdisciplinary study offers a novel approach for estimating and mapping PFAS sorption properties and their impact on PFAS fate and transport. By integrating electromagnetic induction (EMI) surveys, physical and chemical sediment characterization, mineralogical characterization, and batch sorption experiments of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), we develop a comprehensive mapping of sorption dynamics. Sediments collected from a compound bar deposit were analyzed to establish correlations between EMI signal, sediment characteristics, and PFOA and PFOS sorption distribution coefficients (Kd). Sorption behavior and EMI response of these compounds were consistent with the sediments’ physical and chemical properties where Kd and electrical conductivity was higher with finer grain size, higher organic matter content, and higher aluminum and iron contents. The study demonstrates that EMI effectively maps PFAS sorption properties spatially, providing crucial insights into the sedimentological controls that govern both EMI responses and PFAS sorption. Correlation analysis yielded Pearson correlation values of 0.71 for EMI-PFOA Kd and 0.56 for EMI-PFOS Kd, underscoring the potential of EMI in predicting the spatial distribution of PFAS sorption in complex sedimentary environments. While these Pearson correlation values indicate moderate to strong correlations, their significance is amplified by the cost-effectiveness and extensive aerial coverage of EMI, the sparsity of sediment samples typically collected for batch sorption, and their spatial distribution. These results highlight the potential of EMI to identify sorption hotspots, thereby guiding targeted remediation efforts and enhancing site management strategies, ultimately reducing both costs and environmental impacts.
more »
« less
This content will become publicly available on December 1, 2025
Sensitivity of mass flux reduction and mass removal of perfluoroalkyl substances to groundwater flow and transport parameter variability and heterogeneity
Heterogeneity of soil hydraulic (e.g., hydraulic conductivity (KS), porosity (θS)) and chemical (e.g., solid-phase adsorption (Kd)) properties complicates contaminant transport by creating spatial variability in sources of contaminant leaching. There is a knowledge gap on the effect of the interplay between these properties on the retardation and transport of per- and polyfluoroalkyl substances (PFAS) with different properties including carbon–fluorine chain-length and functional groups even in water-saturated conditions. Breakthrough curves have been used to evaluate PFAS transport behavior through heterogeneous media, including arrival time, maximum concentration, and tailing behavior. Contaminant mass flux reduction and mass removal correlations are also compared using numerical modeling to characterize PFAS transport through different source zones within a two-domain, heterogeneous system with comparison to homogeneous scenarios under water-saturated conditions. With heterogeneous properties, model sensitivity to KS was the highest among the other parameters and was controlled by the KS ratio between the different soils. The PFAS models in the homogeneous and heterogeneous scenarios were both sensitive to θS, depending on PFAS chain length. However, long-chain PFAS were less sensitive to θS variability compared to short-chain PFAS due to their higher Kd. The homogeneous and heterogeneous scenarios were equally sensitive to Kd variability, which was dependent on PFAS chain length.
more »
« less
- Award ID(s):
- 2142686
- PAR ID:
- 10566035
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Hydrology
- Volume:
- 645
- Issue:
- PB
- ISSN:
- 0022-1694
- Page Range / eLocation ID:
- 132268
- Subject(s) / Keyword(s):
- PFAS Heterogeneity Transport Model sensitivity Mass flux reduction Mass removal
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Per- and polyfluoroalkyl substances (PFAS) are surface-active contaminants, which are detected in groundwater globally, presenting serious health concerns. The vadose zone and surface water are recognized as primary sources of PFAS contamination. Previous studies have explored PFAS transport and retention mechanisms in the vadose zone, revealing that adsorption at interfaces and soil/sediment heterogeneity significantly influences PFAS retention. However, our understanding of how surface water−groundwater interactions along river corridors impact PFAS transport remains limited. To analyze PFAS transport during surface water−groundwater interactions, we performed saturated−unsaturated flow and reactive transport simulations in heterogeneous riparian sediments. Incorporating uncertainty quantification and sensitivity analysis, we identified key physical and geochemical sediment properties influencing PFAS transport. Our models considered aqueous-phase transport and adsorption both at the air−water interface (AWI) and the solid-phase surface. We tested different cases of heterogeneous sediments with varying volume proportions of higher permeability sediments, conducting 2000 simulations for each case, followed by global sensitivity and response surface analyses. Results indicate that sediment porosities, which are correlated to permeabilities, are crucial for PFAS transport in riparian sediments during river stage fluctuations. High-permeable sediment (e.g., sandy gravel, sand) is the preferential path for the PFAS transport, and low-permeable sediment (e.g., silt, clay) is where PFAS is retained. Additionally, the results show that adsorption at interfaces (AWI and solid phase) has a small impact on PFAS retention in riparian environments. This study offers insights into factors influencing PFAS transport in riparian sediments, potentially aiding the development of strategies to reduce the risk of PFAS contamination in groundwater from surface water.more » « less
-
Abstract Air–water interfacial adsorption complicates per‐ and polyfluoroalkyl substance (PFAS) transport in vadose zones. Air–water interfaces can arise from pendular rings between soil grains and thin water films on grain surfaces, the latter of which account for over 90% of the total air–water interfaces for most field‐relevant conditions. However, whether all thin‐water‐film air–water interfaces are accessible by PFAS and how mass‐transfer limitations in thin water films control PFAS transport in soils remain unknown. We develop a pore‐scale model that represents both PFAS adsorption at bulk capillary and thin‐water‐film air–water interfaces and the mass‐transfer processes between bulk capillary water and thin water films (including advection, aqueous diffusion, and surface diffusion along air–water interfaces). We apply the pore‐scale model to a series of numerical experiments—constrained by experimentally determined hydraulic parameters and air–water interfacial area data sets—to examine the impact of thin‐water‐film mass‐transfer limitations in a sand medium. Our analyses suggest: (a) The mass‐transfer limitations between bulk capillary water and thin water films inside a pore are negligible due to surface diffusion. (b) However, strong mass‐transfer limitations arise in thin water films of pore clusters where pendular rings disconnect. The mass‐transfer limitations lead to early arrival and long tailing behaviors even if surface diffusion is present. (c) Despite the mass‐transfer limitations, all air–water interfaces in the thin water films were accessed by PFAS under the simulated conditions. These findings highlight the importance of incorporating the thin‐water‐film mass‐transfer limitations and surface diffusion for modeling PFAS transport in vadose zones.more » « less
-
Dual-porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore-scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive-tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore-scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic-length scale estimated from a best-fit dual domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass-transfer rate; and (3) a comparison of length scales associated with the mass-transfer rate (Lα) and those associated with calculation of the Peclet number (LPe) show LPe is commonly larger than Lα. These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore-water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single-porosity domains.more » « less
-
Abstract The determination of gas phase thermochemical properties of per‐ and polyfluoroalkyl substances (PFAS) is central to understanding the long‐range transport behavior of PFAS in the atmosphere. Prior gas‐phase studies have reported the properties of perfluorinated sulfonic acid (PFOS) and perfluorinated octanoic acid (PFOA). Here, this study reports the gas phase enthalpies of formation of short‐ and long‐chain PFAS and their precursor molecules determined using density functional theory (DFT) andab initioapproaches. Two density functionals, twoab initiomethods and an empirical method were used to compute enthalpies of formation with the total atomization approach and an isogyric reaction. The performance of the computational methods employed in this work were validated against the experimental enthalpies of linear alkanoic acids and perfluoroalkanes. The gas‐phase determinations will be useful for future studies of PFAS in the atmosphere, and the methodological choices will be helpful in the study of other PFAS.more » « less
An official website of the United States government
