Abstract. This study presents a novel analysis of two hailstones collected in central Argentina to provide insights into the size distribution, composition, and potential sources of non-soluble particles within hailstones. Using this new method, non-soluble particles are trapped beneath a thin layer of polyvinyl resin and analyzed with Confocal Laser and Scanning Electron Microscopy combined with Energy-Dispersive Spectroscopy, preserving their in-situ location and physical characteristics. The study characterized these particles' distribution, shape, and size and identified their elemental composition, which is used to interpret possible source regions. Particles ranged in diameter from 1.2 to 256.0 microns, with the largest found in hailstone embryos. Agglomerated mineral and organic particles dominated the elemental composition, followed by organics and quartz, and were present throughout the hailstones. Agglomerated salt particles detected in one sample were traced to a nearby salt lake, while copper chloride and zinc chloride particles found in the second sample were potentially associated with agrochemicals commonly used for pest control and fertilizer, including in Argentina. Various local and regional land-use types, including shrublands, mixed vegetation, croplands, and urban areas, were linked to specific types of particles. This study, therefore, highlights the regional influence of various land use types on hail formation and growth, pointing to the potential impacts of natural and anthropogenic factors on hailstone composition.
more »
« less
Exploring non-soluble particles in hailstones through innovative confocal laser and scanning electron microscopy techniques
Abstract. This paper introduces an innovative microscopy analysis methodology to preserve in situ non-soluble particles within hailstones using a protective porous plastic coating, overcoming previous limitations related to melting the hailstone sample. The method is composed of two techniques: trapping non-soluble particles beneath a plastic coat using the adapted sublimation technique and then analyzing the particles individually with confocal laser scanning microscopy (CLSM) and scanning electron microscopy with energy-dispersive spectroscopy (SEM–EDS). CLSM provides insights into physical attributes like particle size and surface topography, enhancing our understanding of ice nucleation. SEM–EDS complement CLSM by offering detailed information on individual particle elemental chemistry, enabling classification based on composition. Strategies to reduce background noise from glass substrates during EDS spectral analysis are proposed. By combining powerful, high-resolution microscopy techniques, this methodology provides valuable data on hailstone composition and properties. This information can give insights into hail developmental processes by enhancing our understanding of the role of atmospheric particles.
more »
« less
- Award ID(s):
- 2146708
- PAR ID:
- 10566207
- Publisher / Repository:
- European Geophysical Union
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 17
- Issue:
- 18
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 5561 to 5579
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work presents a multi-scale microstructural characterization of aluminum alloys processed by high-pressure torsion (HPT) and cold angular rolling process (CARP) to improve their mechanical properties. Mechanical properties such as microhardness and tensile strength were correlated with microstructural features. To understand the processing-structure-property relationships, characterization methods spanning nano- to millimeter scales were used, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) EDS. TEM and STEM EDS were used to show that HPT of a Mg sheet sandwiched between Al sheets successfully produced a supersaturated solid solution (SSSS) of Mg in Al and several Al-Mg intermetallic phases, leading to significant grain refinement and increases in microhardness over pure Al. Although CARP has potential to induce the severe plastic deformation (SPD), the CARP system used in this work was not able to achieve SPD aluminum alloys. However, SEM EBSD characterization shows that CARP achieves an increase of the low-angle grain boundaries (LAGBs) and geometrically necessary dislocation (GND) density in Al-1043,which improves the mechanical properties. Moreover, a preliminary study was conducted on CAPR processed Al-6061 alloys to understand the synergistic effects precipitation and CARP-processing on the microstructure and properties. This research provides the critical insights into the capabilities and current limitations of CARP as a continuous SPD technique for aluminum alloys, and demonstrate the importance of integrated multi-scale characterization in understanding advanced materials processing.more » « less
-
Biomass burning organic aerosol (BBOA) is one of the largest sources of organics in the atmosphere. Mineral dust and biomass burning smoke frequently co-exist in the same atmospheric environment. Common biomass burning compounds, such as dihydroxybenzenes and their derivatives, are known to produce light-absorbing, water-insoluble polymeric particles upon reaction with soluble Fe( iii ) under conditions characteristic of aerosol liquid water. However, such reactions have not been tested in realistic mixtures of BBOA compounds. In this study, model organic aerosol (OA), meant to replicate BBOA from smoldering fires, was generated through the pyrolysis of Canary Island pine needles in a tube furnace at 300, 400, 500, 600, 700, and 800 °C in nitrogen gas, and the water-soluble fractions were reacted with iron chloride under dark, acidic conditions. We utilized spectrophotometry to monitor the reaction progress. For OA samples produced at lower temperatures (300 and 400 °C), particles (P300 and P400) formed in solution, were syringe filtered, and extracted in organic solvents. Analysis was conducted with ultrahigh pressure liquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer (UHPLC-PDA-HRMS). For OA samples formed at higher pyrolysis temperatures (500–800 °C), water-insoluble, black particles (P500–800) formed in solution. In contrast to P300 and P400, P500–800 were not soluble in common solvents. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM) were used to image P600 and determine bulk elemental composition. Electron microscopy revealed that P600 had fractal morphology, reminiscent of soot particles, and contained no detectable iron. These results suggest that light-absorbing aerosol particles can be produced from Fe( iii )-catalyzed reactions in aging BBOA plumes produced from smoldering combustion in the absence of any photochemistry. This result has important implications for understanding the direct and indirect effects of aged BBOA on climate.more » « less
-
Abstract Directed energy deposition (DED) was used to produce niobium carbide (NbC)‐reinforced Ti6Al4V (Ti64) metal–matrix‐composite (MMC) structures. The objective was to improve upon Ti64's wear and oxidation resistance. The characterization techniques consisted of scanning electron microscopy (SEM), backscattered electron (BSE) imaging, energy‐dispersive X‐ray spectroscopy (EDS), X‐ray diffraction analysis (XRD), thermogravimetric analysis (TGA), Vickers micro‐ and nanoindentation‐derived hardness, as well as tribological testing at varying normal loads. DED produced compositions were of Ti64, Ti64 + 5 wt.% NbC (5NbC), and Ti64 + 10 wt.% NbC (10NbC). Electron micrographs revealed crack‐ and delamination‐free structures. Tribological analysis revealed a 25.1% reduction in specific wear rate. XRD and EDS results indicated the presence of a Ti‐Nb solid solution. It was deduced that the NbC particles coupled with the Ti‐Nb solid solution aided in increasing Ti64's resistance to plastic shear as the superficial microstructure remained unchanged compared to pure Ti64. Additionally, TGA displayed a reduction in total oxidation mass gain and suppressed oxidation kinetics to parabolic behavior with increased NbC. Application‐based composite structures with site‐specific mechanical properties were fabricated in the form of a composite cylinder, gear and compositionally graded cylinder. The graded cylinder displayed a 0%–45%NbC presence—end‐to‐end—equating to a hardness increase from 161.6 ± 4.0HV0.2to 1055.9 ± 157.4HV0.2.more » « less
-
null (Ed.)In this report, we explore the internal structural features of polyMOFs consisting of equal mass ratios of metal-coordinating poly(benzenedicarboxylic acid) blocks and non-coordinating poly(ethylene glycol) (PEG) blocks. The studies reveal alternating lamellae of metal-rich, crystalline regions and metal-deficient non-crystalline polymer, which span the length of hundreds of nanometers. Polymers consisting of random PEG blocks, PEG end-blocks, or non-coordinating poly(cyclooctadiene) (COD) show similar alternation of metal-rich and metal-deficient regions, indicating a universal self-assembly mechanism. A variety of techniques were employed to interrogate the internal structure of the polyMOFs, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and small-angle synchrotron X-ray scattering (SAXS). Independent of the copolymer architecture or composition, the internal structure of the polyMOF crystals showed similar lamellar self-assembly at single-nanometer length scales.more » « less
An official website of the United States government

