SUMMARY Plants respond to low temperatures by altering the mRNA abundance of thousands of genes contributing to numerous physiological and metabolic processes that allow them to adapt. At the post‐transcriptional level, these cold stress‐responsive transcripts undergo alternative splicing, microRNA‐mediated regulation and alternative polyadenylation, amongst others. Recently, m6A, m5C and other mRNA modifications that can affect the regulation and stability of RNA were discovered, thus revealing another layer of post‐transcriptional regulation that plays an important role in modulating gene expression. The importance of m6A in plant growth and development has been appreciated, although its significance under stress conditions is still underexplored. To assess the role of m6A modifications during cold stress responses, methylated RNA immunoprecipitation sequencing was performed in Arabidopsis seedlings esposed to low temperature stress (4°C) for 24 h. This transcriptome‐wide m6A analysis revealed large‐scale shifts in this modification in response to low temperature stress. Because m6A is known to affect transcript stability/degradation and translation, we investigated these possibilities. Interestingly, we found that cold‐enriched m6A‐containing transcripts demonstrated the largest increases in transcript abundance coupled with increased ribosome occupancy under cold stress. The significance of the m6A epitranscriptome on plant cold tolerance was further assessed using themtamutant in which the major m6A methyltransferase gene was mutated. Compared to the wild‐type, along with the differences inCBFsandCORgene expression levels, themtamutant exhibited hypersensitivity to cold treatment as determined by primary root growth, biomass, and reactive oxygen species accumulation. Furthermore, and most importantly, both non‐acclimated and cold‐acclimatedmtamutant demonstrated hypersensitivity to freezing tolerance. Taken together, these findings suggest a critical role for the epitranscriptome in cold tolerance of Arabidopsis.
more »
« less
From the depths of the Java Trench: genomic analysis of Priestia flexa JT4 reveals bioprospecting and lycopene production potential
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited. Based on the ploidy identification of tested materials, an imitation experiment was conducted to investigate the variation in freezing injury index and expression of the CpaWRKY family members in diploid and tetraploid C. paliurus seedlings. The results indicated a significant difference in freezing injury index between diploids and tetraploids under the imitating temperature of southern warm temperate zone, with diploids showing better cold tolerance than the tetraploids. A total of 88 CpaWRKY genes were identified from the C. paliurus genome, and RNA-Seq results showed significant differences in WRKY gene expression in C. paliurus under cold stress. Correlation analysis between differentially expressed genes and freezing injury index suggested that CpaWRKY14, CpaWRKY26 and CpaWRKY86 play essential roles in the diploids to respond to cold stress. In contrast, the major genes involved in the cold stress response in tetraploids were CpaWRKY14, CpaWRKY60, CpaWRKY63 and CpaWRKY81. Moreover, CpaWRKY14 expression was considerably higher in diploids compared to tetraploids. The results from this study not only enhance our comprehension of the role of the CpaWRKY genes in cold stress, but also provide a foundation for the genetic improvement of C. paliurus.
more »
« less
- Award ID(s):
- 2242151
- PAR ID:
- 10566225
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- NA
- Publisher / Repository:
- BMC part of Springer Nature
- Date Published:
- Journal Name:
- BMC Genomics
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 1471-2164
- Subject(s) / Keyword(s):
- Deep-sea waters Java Trench Whole genome sequencing Priestia flexa Biosynthetic gene cluster Bioprospecting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.more » « less
-
Abstract The response of ectotherms to temperature stress is complex, non-linear, and is influenced by life stage and previous thermal exposure. Mortality is higher under constant low temperatures than under a fluctuating thermal regime (FTR) that maintains the same low temperature but adds a brief, daily pulse of increased temperature. Long term exposure to FTR has been shown to increase transcription of genes involved in oxidative stress, immune function, and metabolic pathways, which may aid in recovery from chill injury and oxidative damage. Previous research suggests the transcriptional response that protects against sub-lethal damage occurs rapidly under exposure to fluctuating temperatures. However, existing studies have only examined gene expression after a week or over many months. Here we characterize gene expression during a single temperature cycle under FTR. Development of pupating alfalfa leafcutting bees (Megachile rotundata) was interrupted at the red-eye stage and were transferred to 6°C with a 1-h pulse to 20°C and returned to 6°C. RNA was collected before, during, and after the temperature pulse and compared to pupae maintained at a static 6°C. The warm pulse is sufficient to cause expression of transcripts that repair cell membrane damage, modify membrane composition, produce antifreeze proteins, restore ion homeostasis, and respond to oxidative stress. This pattern of expression indicates that even brief exposure to warm temperatures has significant protective effects on insects exposed to stressful cold temperatures that persist beyond the warm pulse. Megachile rotundata’s sensitivity to temperature fluctuations indicates that short exposures to temperature changes affect development and physiology. Genes associated with developmental patterning are expressed after the warm pulse, suggesting that 1 h at 20°C was enough to resume development in the pupae. The greatest difference in gene expression occurred between pupae collected after the warm pulse and at constant low temperatures. Although both were collected at the same time and temperature, the transcriptional response to one FTR cycle included multiple transcripts previously identified under long-term FTR exposure associated with recovery from chill injury, indicating that the effects of FTR occur rapidly and are persistent.more » « less
-
Braeutigam, Andrea (Ed.)Abstract Opaque kernels in maize may result from mutations in many genes, such as OPAQUE-2. In this study, a maize null mutant of RNA-DIRECTED DNA METHYLATION 4 (RDM4) showed an opaque kernel phenotype, as well as plant developmental delay, male sterility, and altered response to cold stress. We found that in opaque kernels, all zein proteins were reduced and amino acid content was changed, including increased lysine. Transcriptomic and proteomic analysis confirmed the zein reduction and proteomic rebalancing of non-zein proteins, which was quantitatively and qualitatively different from opaque-2. Global transcriptional changes were found in endosperm and leaf, including many transcription factors and tissue-specific expressed genes. Furthermore, of the more than 8000 significantly differentially expressed genes in wild type in response to cold, a significant proportion (25.9% in moderate cold stress and 40.8% in near freezing stress) were not differentially expressed in response to cold in rdm4, suggesting RDM4 may participate in regulation of abiotic stress tolerance. This initial characterization of maize RDM4 provides a basis for further investigating its function in endosperm and leaf, and as a regulator of normal and stress-responsive development.more » « less
-
Abstract Background Plant growth promoting rhizobacteria (PGPR) , such as Bradyrhizobium japonicum IRAT FA3, are able to improve seed germination and plant growth under various biotic and abiotic stress conditions, including high salinity stress. PGPR can affect plants’ responses to stress via multiple pathways which are often interconnected but were previously thought to be distinct. Although the overall impacts of PGPR on plant growth and stress tolerance have been well documented, the underlying mechanisms are not fully elucidated. This work contributes to understanding how PGPR promote abiotic stress by revealing major plant pathways triggered by B. japonicum under salt stress. Results The plant growth-promoting rhizobacterial (PGPR) strain Bradyrhizobium japonicum IRAT FA3 reduced the levels of sodium in Arabidopsis thaliana by 37.7% . B. japonicum primed plants as it stimulated an increase in jasmonates (JA) and modulated hydrogen peroxide production shortly after inoculation. B. japonicum -primed plants displayed enhanced shoot biomass, reduced lipid peroxidation and limited sodium accumulation under salt stress conditions. Q(RT)-PCR analysis of JA and abiotic stress-related gene expression in Arabidopsis plants pretreated with B. japonicum and followed by six hours of salt stress revealed differential gene expression compared to non-inoculated plants. Response to Desiccation ( RD ) gene RD20 and reactive oxygen species scavenging genes CAT3 and MDAR2 were up-regulated in shoots while CAT3 and RD22 were increased in roots by B. japonicum , suggesting roles for these genes in B. japonicum -mediated salt tolerance. B. japonicum also influenced reductions of RD22 , MSD1 , DHAR and MYC2 in shoots and DHAR , ADC2 , RD20 , RD29B , GTR1 , ANAC055 , VSP1 and VSP2 gene expression in roots under salt stress. Conclusion Our data showed that MYC2 and JAR1 are required for B. japonicum -induced shoot growth in both salt stressed and non-stressed plants. The observed microbially influenced reactions to salinity stress in inoculated plants underscore the complexity of the B. japonicum jasmonic acid-mediated plant response salt tolerance.more » « less
An official website of the United States government

