skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing the onset of transitional and turbulent flow regimes in pipe flows using instantaneous time-frequency-based analysis
Accurately identifying the onset of transitional and turbulent flow within any pipe flow environment is of great interest. Most often, the critical Reynolds number (Re) is used to pinpoint the onset of turbulence. However, the critical Re is known to be highly variable, depending on the specifics of the flow system. Thus, for flows (e.g., blood flows), where only one realization (i.e., one mean Re) exists, the presence of transitional and turbulent flow behaviors cannot be accurately determined. In this work, we aim to address this by evaluating the extent to which instantaneous time-frequency (TF)-based analysis of the fluctuating velocity field can be used to evaluate the onset of transitional and turbulent flow regimes. Because current TF analysis methods are not suitable for this, we propose a novel “wavelet-Hilbert time-frequency” (WHTF) method, which we validate herein. Using the WHTF method, we analyzed the instantaneous dominant frequency of three planar particle image velocimetry-captured pipe flows, which included one steady and two pulsatile with Womersley numbers of 4 and 12. For each case, data were captured at Re's spanning 800–4500. The instantaneous dominant frequency analysis of these flows revealed that the magnitude, size, and coherence of two-dimensional spatial frequency structures were uniquely different across flow regimes. Specifically, the transitional regime maintained the most coherent, but lowest magnitude frequency structures, while the laminar regime had the highest magnitude, lowest coherence, and smallest frequency structures. Overall, this study demonstrates the efficacy of TF-based metrics for characterizing the progression of transition and turbulent flow development.  more » « less
Award ID(s):
2335760
PAR ID:
10566246
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
36
Issue:
10
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rotating and swirling turbulence comprises an important class of flows, not only due to the complex physics that occur, but also due to their relevance to many engineering applications, such as combustion, cyclone separation, mixing, etc. In these types of flows, rotation strongly affects the characteristics and structure of turbulence. However, the underlying turbulent flow phenomena are complex and currently not well understood. The axially rotating pipe is an exemplary prototypical model problem that exhibits these complex turbulent flow physics. By examining the complex interaction of turbulent structures within rotating turbulent pipe flow, insight can be gained into the behavior of rotating flows relevant to engineering applications. Direct numerical simulations are conducted at a bulk Reynolds number up to Re_D = 19,000 with rotation numbers ranging from N = 0 to 3. Coherence analysis, including Proper Orthogonal Decomposition and Dynamic Mode Decomposition, are used to identify the relevant (highest energy) modes of the flow. Studying the influence of these modes on turbulent statistics (i.e. mean statistics, Reynolds stresses, turbulent kinetic energy, and turbulent kinetic energy budgets) allow for a deeper understanding of the effects of coherent turbulent flow structures in rotating flows. 
    more » « less
  2. Input–output analysis of transitional channel flows has proven to be a valuable analytical tool for identifying important flow structures and energetic motions. The traditional approach abstracts the nonlinear terms as forcing that is unstructured, in the sense that this forcing is not directly tied to the underlying nonlinearity in the dynamics. This paper instead employs a structured-singular-value-based approach that preserves certain input–output properties of the nonlinear forcing function in an effort to recover the larger range of key flow features identified through nonlinear analysis, experiments and direct numerical simulation (DNS) of transitional channel flows. Application of this method to transitional plane Couette and plane Poiseuille flows leads to not only the identification of the streamwise coherent structures predicted through traditional input–output approaches, but also the characterization of the oblique flow structures as those requiring the least energy to induce transition, in agreement with DNS studies, and nonlinear optimal perturbation analysis. The proposed approach also captures the recently observed oblique turbulent bands that have been linked to transition in experiments and DNS with very large channel size. The ability to identify the larger amplification of the streamwise varying structures predicted from DNS and nonlinear analysis in both flow regimes suggests that the structured approach allows one to maintain the nonlinear effects associated with weakening of the lift-up mechanism, which is known to dominate the linear operator. Capturing this key nonlinear effect enables the prediction of a wider range of known transitional flow structures within the analytical input–output modelling paradigm. 
    more » « less
  3. Extensive studies of the hydraulics of pipes have focused on limiting cases, such as fully-developed laminar or turbulent flow through long conduits and the accelerating flow through an orifice, for which there exist laws relating pressure drop and flow rate. We carry out experiments on smooth, circular pipes for dimensions and flow rates that interrogate intermediate conditions between the well-studied limits. Organizing this information in terms of dimensionless friction factor, Reynolds number and pipe aspect ratio yields a surface $$f_D(Re,\alpha )$$ that is shown to match the three laws associated with developed laminar, developed turbulent, and orifice flows. While each law fails outside its applicable range of $$(Re,\alpha )$$ , we present a hybrid theoretical–empirical model that includes inlet, development and transition effects, and that proves accurate to approximately 10 % over wide ranges of $Re$ and $$\alpha$$ . We also present simple formulas for the boundaries between the three hydraulic regimes, which intersect at a triple point. Measurements show that sipping through a straw is an everyday example of such intermediate conditions not accounted for by existing laws but described accurately by our model. More generally, our findings provide formulas for predicting frictional resistance for intermediate- $Re$ flows through finite-length pipes. 
    more » « less
  4. In this work, we apply structured input-output analysis to study optimal perturbations and dominant flow patterns in transitional plane Couette-Poiseuille flow. The results demonstrate that this approach predicts the high structured gain of perturbations with wavelengths corresponding to the oblique turbulent bands observed in experiments. The inclination angles of these structures and their Reynolds number dependence are also consistent with previously observed trends. Reynolds number scalings of the maximally amplified structures for an intermediate laminar profile that is equally balanced between plane Couette and Poiseuille flow show an exponent that is at the midpoint of previously computed values for these two flows. However, the dependence of these scaling exponents on the shape of laminar flow as the relative contribution moves from predominately plane Couette to Poiseuille flow is not monotonic and our analysis indicates the emergence of different optimal perturbation structures through the parameter regime. Finally we adapt our approach to estimate the advection speeds of oblique turbulent bands in plane Couette flow and Poiseuille flow by computing their phase speed. The results show good agreement with prior predictions of the convection speeds of these structures from direct numerical simulations, which suggests that this framework has further potential in examining the dynamics of these structures. 
    more » « less
  5. In past experiments, simulations and theoretical analysis, rotation has been shown to dramatically effect the characteristics of turbulent flows, such as causing the mean velocity profile to appear laminar, leading to an overall drag reduction, as well as affecting the Reynolds stress tensor. The axially rotating pipe is an exemplary prototypical model problem that exhibits these complex turbulent flow physics. For this flow, the rotation of the pipe causes a region of turbulence suppression which is particularly sensitive to the rotation rate and Reynolds number. The physical mechanisms causing turbulence suppression are currently not well-understood, and a deeper understanding of these mechanisms is of great value for many practical examples involving swirling or rotating flows, such as swirl generators, wing-tip vortices, axial compressors, hurricanes, etc. In this work, Direct Numerical Simulations (DNS) of rotating turbulent pipe flows are conducted at moderate Reynolds numbers (Re=5300, 11,700, and 19,000) and rotation numbers of N=0 to 3. The main objectives of this work are to firstly quantify turbulence suppression for rotating turbulent pipe flows at different Reynolds numbers as well as study the effects of rotation on turbulence by analyzing the characteristics of the Reynolds stress tensor and the production and dissipation terms of the turbulence budgets. 
    more » « less