skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons
Two facts about cortex are widely accepted: neuronal responses show large spiking variability with near Poisson statistics and cortical circuits feature abundant recurrent connections between neurons. How these spiking and circuit properties combine to support sensory representation and information processing is not well understood. We build a theoretical framework showing that these two ubiquitous features of cortex combine to produce optimal sampling-based Bayesian inference. Recurrent connections store an internal model of the external world, and Poissonian variability of spike responses drives flexible sampling from the posterior stimulus distributions obtained by combining feedforward and recurrent neuronal inputs. We illustrate how this framework for sampling-based inference can be used by cortex to represent latent multivariate stimuli organized either hierarchically or in parallel. A neural signature of such network sampling are internally generated differential correlations whose amplitude is determined by the prior stored in the circuit, which provides an experimentally testable prediction for our framework.  more » « less
Award ID(s):
1707400
PAR ID:
10566326
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Portofolio
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In biological brains, recurrent connections play a crucial role in cortical computation, modulation of network dynamics, and communication. However, in recurrent spiking neural networks (SNNs), recurrence is mostly constructed by random connections. How excitatory and inhibitory recurrent connections affect network responses and what kinds of connectivity benefit learning performance is still obscure. In this work, we propose a novel recurrent structure called the Laterally-Inhibited Self-Recurrent Unit (LISR), which consists of one excitatory neuron with a self-recurrent connection wired together with an inhibitory neuron through excitatory and inhibitory synapses. The self-recurrent connection of the excitatory neuron mitigates the information loss caused by the firing-and-resetting mechanism and maintains the long-term neuronal memory. The lateral inhibition from the inhibitory neuron to the corresponding excitatory neuron, on the one hand, adjusts the firing activity of the latter. On the other hand, it plays as a forget gate to clear the memory of the excitatory neuron. Based on speech and image datasets commonly used in neuromorphic computing, RSNNs based on the proposed LISR improve performance significantly by up to 9.26% over feedforward SNNs trained by a state-of-the-art backpropagation method with similar computational costs. 
    more » « less
  2. null (Ed.)
    Abstract As an important class of spiking neural networks (SNNs), recurrent spiking neural networks (RSNNs) possess great computational power and have been widely used for processing sequential data like audio and text. However, most RSNNs suffer from two problems. First, due to the lack of architectural guidance, random recurrent connectivity is often adopted, which does not guarantee good performance. Second, training of RSNNs is in general challenging, bottlenecking achievable model accuracy. To address these problems, we propose a new type of RSNN, skip-connected self-recurrent SNNs (ScSr-SNNs). Recurrence in ScSr-SNNs is introduced by adding self-recurrent connections to spiking neurons. The SNNs with self-recurrent connections can realize recurrent behaviors similar to those of more complex RSNNs, while the error gradients can be more straightforwardly calculated due to the mostly feedforward nature of the network. The network dynamics is enriched by skip connections between nonadjacent layers. Moreover, we propose a new backpropagation (BP) method, backpropagated intrinsic plasticity (BIP), to boost the performance of ScSr-SNNs further by training intrinsic model parameters. Unlike standard intrinsic plasticity rules that adjust the neuron's intrinsic parameters according to neuronal activity, the proposed BIP method optimizes intrinsic parameters based on the backpropagated error gradient of a well-defined global loss function in addition to synaptic weight training. Based on challenging speech, neuromorphic speech, and neuromorphic image data sets, the proposed ScSr-SNNs can boost performance by up to 2.85% compared with other types of RSNNs trained by state-of-the-art BP methods. 
    more » « less
  3. Morrison, Abigail (Ed.)
    Assessing directional influences between neurons is instrumental to understand how brain circuits process information. To this end, Granger causality, a technique originally developed for time-continuous signals, has been extended to discrete spike trains. A fundamental assumption of this technique is that the temporal evolution of neuronal responses must be due only to endogenous interactions between recorded units, including self-interactions. This assumption is however rarely met in neurophysiological studies, where the response of each neuron is modulated by other exogenous causes such as, for example, other unobserved units or slow adaptation processes. Here, we propose a novel point-process Granger causality technique that is robust with respect to the two most common exogenous modulations observed in real neuronal responses: within-trial temporal variations in spiking rate and between-trial variability in their magnitudes. This novel method works by explicitly including both types of modulations into the generalized linear model of the neuronal conditional intensity function (CIF). We then assess the causal influence of neuron i onto neuron j by measuring the relative reduction of neuron j ’s point process likelihood obtained considering or removing neuron i . CIF’s hyper-parameters are set on a per-neuron basis by minimizing Akaike’s information criterion. In synthetic data sets, generated by means of random processes or networks of integrate-and-fire units, the proposed method recovered with high accuracy, sensitivity and robustness the underlying ground-truth connectivity pattern. Application of presently available point-process Granger causality techniques produced instead a significant number of false positive connections. In real spiking responses recorded from neurons in the monkey pre-motor cortex (area F5), our method revealed many causal relationships between neurons as well as the temporal structure of their interactions. Given its robustness our method can be effectively applied to real neuronal data. Furthermore, its explicit estimate of the effects of unobserved causes on the recorded neuronal firing patterns can help decomposing their temporal variations into endogenous and exogenous components. 
    more » « less
  4. State-of-the-art machine learning models have achieved impressive feats of narrow intelligence, but have yet to realize the computational generality, adaptability, and power efficiency of biological brains. Thus, this work aims to improve current neural network models by leveraging the principle that the cortex consists of noisy and imprecise components in order to realize an ultra-low-power stochastic spiking neural circuit that resembles biological neuronal behavior. By utilizing probabilistic spintronics to provide true stochasticity in a compact CMOS-compatible device, an Adaptive Ring Oscillator for as-needed discrete sampling, and a homeostasis mechanism to reduce power consumption, provide additional biological characteristics, and improve process variation resilience, this subthreshold circuit is able to generate sub-nanosecond spiking behavior with biological characteristics at 200mV, using less than 80nW, along with behavioral robustness to process variation. 
    more » « less
  5. Prefrontal cortex modulates sensory signals in extrastriate visual cortex, in part via its direct projections from the frontal eye field (FEF), an area involved in selective attention. We find that working memory-related activity is a dominant signal within FEF input to visual cortex. Although this signal alone does not evoke spiking responses in areas V4 and MT during memory, the gain of visual responses in these areas increases, and neuronal receptive fields expand and shift towards the remembered location, improving the stimulus representation by neuronal populations. These results provide a basis for enhancing the representation of working memory targets and implicate persistent FEF activity as a basis for the interdependence of working memory and selective attention. 
    more » « less