skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian
We present an efficient, open-source formulation for coupled-cluster theory through perturbative triples with domain-based local pair natural orbitals [DLPNO-CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found in the ORCA package, the most expensive integral generation and contraction steps associated with the CCSD(T) method are linear-scaling. In this work, we show that the t1-transformed Hamiltonian allows for a less complex algorithm when evaluating the local CCSD(T) energy without compromising efficiency or accuracy. Our algorithm yields sub-kJ mol−1 deviations for relative energies when compared with canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol−1, using our TightPNO parameters. We extensively tested and optimized our algorithm and parameters for non-covalent interactions, which have been the most difficult interaction to model for orbital (PNO)-based methods historically. To highlight the capabilities of our code, we tested it on large water clusters, as well as insulin (787 atoms).  more » « less
Award ID(s):
1955940
PAR ID:
10566355
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
8
ISSN:
0021-9606
Page Range / eLocation ID:
082502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study evaluates the precision of widely recognized quantum chemical methodologies, CCSD(T), DLPNO−CCSD(T), and localized ph-AFQMC, for determining the thermochemistry of main group elements. DLPNO−CCSD- (T) and localized ph-AFQMC, which o(er greater scalability compared to canonical CCSD(T), have emerged over the past decade as pivotal in producing precise benchmark chemical data. Our investigation includes closed-shell, neutral molecules, focusing on their heat of formation and atomization energy sourced from four specific small molecule data sets. First, we selected molecules from the G2 and G3 data sets, noted for their reliable experimental heat of formation data. Additionally, we incorporate molecules from the W4−11 and W4−17 sets, which provide high-level theoretical reference values for atomization energy at 0 K. Our findings reveal that both DLPNO−CCSD(T) and ph-AFQMC methods are capable of achieving a root-mean-square deviation of less than 1 kcal/mol across the combined data set, aligning with the threshold for chemical accuracy. Moreover, we make e(orts to confine the maximum deviations within 2 kcal/mol, a degree of precision that significantly broadens the applicability of these methods in fields such as biology and materials science. 
    more » « less
  2. Coupled cluster theory has had a momentous impact on the ab initio prediction of molecular properties, and remains a staple ingratiate in high-accuracy thermochemical model chemistries. However, these methods require inclusion of at least some connected quadruple excitations, which generally scale at best as 𝒪(𝑁9) with the number of basis functions. It is very difficult to predict, a priori, the effect correlation of past CCSD(T) on a given reaction energy. The purpose of this work is to examine cost-effective quadruple corrections based on the factorization theorem of the many-body perturbation theory that may address these challenges. We show that the 𝒪(𝑁7) factorized CCSD(TQf) method introduces minimal error to predicted correlation and reaction energies as compared to the 𝒪(𝑁9) CCSD(TQ). Further, we examine the performance of Goodson’s continued fraction method in the estimation of CCSDT(Q)Λ contributions to reaction energies as well as a “new” method related to %TAE[(T)] that we refer to as a scaled perturbation estimator. We find that the scaled perturbation estimator based upon CCSD(TQf)/cc-pVDZ is capable of predicting CCSDT(Q)Λ/cc-pVDZ contributions to reaction energies with an average error of 0.07 kcal mol–1 and an L2D of 0.52 kcal mol–1 when applied to a test-suite of nearly 3000 reactions. This offers a means by which to reliably “ballpark” how important post-CCSD(T) contributions are to reaction energies while incurring no more than CCSD(T) formal cost and a little mental math. 
    more » « less
  3. The many-body expansion (MBE) is promising for the efficient, parallel computation of lattice energies in organic crystals. Very high accuracy should be achievable by employing coupled-cluster singles, doubles, and perturbative triples at the complete basis set limit [CCSD(T)/CBS] for the dimers, trimers, and potentially tetramers resulting from the MBE, but such a brute-force approach seems impractical for crystals of all but the smallest molecules. Here, we investigate hybrid or multi-level approaches that employ CCSD(T)/CBS only for the closest dimers and trimers and utilize much faster methods like Møller–Plesset perturbation theory (MP2) for more distant dimers and trimers. For trimers, MP2 is supplemented with the Axilrod–Teller–Muto (ATM) model of three-body dispersion. MP2(+ATM) is shown to be a very effective replacement for CCSD(T)/CBS for all but the closest dimers and trimers. A limited investigation of tetramers using CCSD(T)/CBS suggests that the four-body contribution is entirely negligible. The large set of CCSD(T)/CBS dimer and trimer data should be valuable in benchmarking approximate methods for molecular crystals and allows us to see that a literature estimate of the core-valence contribution of the closest dimers to the lattice energy using just MP2 was overbinding by 0.5 kJ mol−1, and an estimate of the three-body contribution from the closest trimers using the T0 approximation in local CCSD(T) was underbinding by 0.7 kJ mol−1. Our CCSD(T)/CBS best estimate of the 0 K lattice energy is −54.01 kJ mol−1, compared to an estimated experimental value of −55.3 ± 2.2 kJ mol−1. 
    more » « less
  4. We present a fast, asymptotically linear-scaling implementation of the perturbative quadruples energy correction in coupled-cluster theory using local natural orbitals. Our work follows the domain-based local pair natural orbital (DLPNO) approach previously applied to lower levels of excitations in coupled-cluster theory. Our DLPNO-CCSDT(Q) algorithm uses converged doubles and triples amplitudes from a preceding DLPNO-CCSDT computation to compute the quadruples amplitude and energy in the quadruples natural orbital (QNO) basis. We demonstrate the compactness of the QNO space, showing that more than 95% of the (Q) correction can be recovered using relatively loose natural orbital cutoffs, compared to the tighter cutoffs used in pair and triples natural orbitals at lower levels of coupled-cluster theory. We also highlight the accuracy of our algorithm in the computation of relative energies, which yields deviations of sub-kJ mol−1 in relative energy compared to the canonical CCSDT(Q). Timings are conducted on a series of growing linear alkanes (up to 10 carbons and 608 basis functions) and water clusters (up to 49 water molecules and 2842 basis functions) to establish the asymptotic linear-scaling of our DLPNO-(Q) algorithm. 
    more » « less
  5. Conformational polymorphs of organic molecular crystals represent a challenging test for quantum chemistry because they require careful balancing of the intra- and intermolecular interactions. This study examines 54 molecular conformations from 20 sets of conformational polymorphs, along with the relative lattice energies and 173 dimer interactions taken from six of the polymorph sets. These systems are studied with a variety of van der Waals-inclusive density functionals theory models; dispersion-corrected spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2D); and domain local pair natural orbital coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)]. We investigate how delocalization error in conventional density functionals impacts monomer conformational energies, systematic errors in the intermolecular interactions, and the nature of error cancellation that occurs in the overall crystal. The density functionals B86bPBE-XDM, PBE-D4, PBE-MBD, PBE0-D4, and PBE0-MBD are found to exhibit sizable one-body and two-body errors vs DLPNO-CCSD(T) benchmarks, and the level of success in predicting the relative polymorph energies relies heavily on error cancellation between different types of intermolecular interactions or between intra- and intermolecular interactions. The SCS-MP2D and, to a lesser extent, ωB97M-V models exhibit smaller errors and rely less on error cancellation. Implications for crystal structure prediction of flexible compounds are discussed. Finally, the one-body and two-body DLPNO-CCSD(T) energies taken from these conformational polymorphs establish the CP1b and CP2b benchmark datasets that could be useful for testing quantum chemistry models in challenging real-world systems with complex interplay between intra- and intermolecular interactions, a number of which are significantly impacted by delocalization error. 
    more » « less