skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-driven strategy synthesis for stochastic systems with unknown nonlinear disturbances
In this paper, we introduce a data-driven framework for synthesis of provably-correct controllers for general nonlinear switched systems under complex specifications. The focus is on systems with unknown disturbances whose effects on the dynamics of the system is nonlinear. The specification is assumed to be given as linear temporal logic over finite traces (LTLf) formulas. Starting from observations of either the disturbance or the state of the system, we first learn an ambiguity set that contains the unknown distribution of the disturbances with a user-defined confidence. Next, we obtain a robust Markov decision process (RMDP) as a finite abstraction of the system. By composing the RMDP with the automaton obtained from the LTLf formula and performing optimal robust value iteration on the composed RMDP, we synthesize a strategy that yields a high probability that the uncertain system satisfies the specifications. Our empirical evaluations on systems with a wide variety of disturbances show that the strategies synthesized with our approach lead to high satisfaction probabilities and validate the theoretical guarantees.  more » « less
Award ID(s):
2039062
PAR ID:
10566404
Author(s) / Creator(s):
; ; ;
Editor(s):
Abate, Alessandro; Cannon, Mark; Margellos, Kostas; Papachristodoulou, Antonis
Publisher / Repository:
Proceedings of Machine Learning Research (PMLR)
Date Published:
Volume:
242
Page Range / eLocation ID:
1633-1645
Format(s):
Medium: X
Location:
Oxford, UK
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a data-driven framework for strategy synthesis for partially-known switched stochastic systems. The properties of the system are specified using linear temporal logic (LTL) over finite traces (LTLf), which is as expressive as LTL and enables interpretations over finite behaviors. The framework first learns the unknown dynamics via Gaussian process regression. Then, it builds a formal abstraction of the switched system in terms of an uncertain Markov model, namely an Interval Markov Decision Process (IMDP), by accounting for both the stochastic behavior of the system and the uncertainty in the learning step. Then, we synthesize a strategy on the resulting IMDP that maximizes the satisfaction probability of the LTLf specification and is robust against all the uncertainties in the abstraction. This strategy is then refined into a switching strategy for the original stochastic system. We show that this strategy is near-optimal and provide a bound on its distance (error) to the optimal strategy. We experimentally validate our framework on various case studies, including both linear and non-linear switched stochastic systems. 
    more » « less
  2. Synthesis techniques for temporal logic specifications are typically based on exploiting symbolic techniques, as done in model checking. These symbolic techniques typically use backward fixpoint computation. Planning, which can be seen as a specific form of synthesis, is a witness of the success of forward search approaches. In this paper, we develop a forward-search approach to full-fledged Linear Temporal Logic on finite traces (LTLf) synthesis. We show how to compute the Deterministic Finite Automaton (DFA) of an LTLf formula on-the-fly, while performing an adversarial forward search towards the final states, by considering the DFA as a sort of AND-OR graph. Our approach is characterized by branching on suitable propositional formulas, instead of individual evaluations, hence radically reducing the branching factor of the search space. Specifically, we take advantage of techniques developed for knowledge compilation, such as Sentential Decision Diagrams (SDDs), to implement the approach efficiently. 
    more » « less
  3. LTL synthesis is the problem of synthesizing a reactive system from a formal specification in Linear Temporal Logic. The extension of allowing for partial observability, where the system does not have direct access to all relevant information about the environment, allows generalizing this problem to a wider set of real-world applications, but the difficulty of implementing such an extension in practice means that it has remained in the realm of theory. Recently, it has been demonstrated that restricting LTL synthesis to systems with finite executions by using LTL with finite-horizon semantics (LTLf) allows for significantly simpler implementations in practice. With the conceptual simplicity of LTLf, it becomes possible to explore extensions such as partial observability in practice for the first time. Previous work has analyzed the problem of LTLf synthesis under partial observability theoretically and suggested two possible algorithms, one with 3EXPTIME and another with 2EXPTIME complexity. In this work, we first prove a complexity lower bound conjectured in earlier work. Then, we complement the theoretical analysis by showing how the two algorithms can be integrated in practice into an established framework for LTLf synthesis. We furthermore identify a third, MSO-based, approach enabled by this framework. Our experimental evaluation reveals very different results from what the theory seems to suggest, with the 3EXPTIME algorithm often outperforming the 2EXPTIME approach. Furthermore, as long as it is able to overcome an initial memory bottleneck, the MSO-based approach can often outperforms the others. 
    more » « less
  4. Many systems are naturally modeled as Markov Decision Processes (MDPs), combining probabilities and strategic actions. Given a model of a system as an MDP and some logical specification of system behavior, the goal of synthesis is to find a policy that maximizes the probability of achieving this behavior. A popular choice for defining behaviors is Linear Temporal Logic (LTL). Policy synthesis on MDPs for properties specified in LTL has been well studied. LTL, however, is defined over infinite traces, while many properties of interest are inherently finite. Linear Temporal Logic over finite traces (LTLf ) has been used to express such properties, but no tools exist to solve policy synthesis for MDP behaviors given finite-trace properties. We present two algorithms for solving this synthesis problem: the first via reduction of LTLf to LTL and the second using native tools for LTLf . We compare the scalability of these two approaches for synthesis and show that the native approach offers better scalability compared to existing automaton generation tools for LTL. 
    more » « less
  5. Identifying disturbances in network-coupled dynamical systems without knowledge of the disturbances or underlying dynamics is a problem with a wide range of applications. For example, one might want to know which nodes in the network are being disturbed and identify the type of disturbance. Here, we present a model-free method based on machine learning to identify such unknown disturbances based only on prior observations of the system when forced by a known training function. We find that this method is able to identify the locations and properties of many different types of unknown disturbances using a variety of known forcing functions. We illustrate our results with both linear and nonlinear disturbances using food web and neuronal activity models. Finally, we discuss how to scale our method to large networks. 
    more » « less