skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Examining spatial and socioeconomic disparities in internet resilience during extreme weather events: a case study of Hurricane Harvey and Winter Storm Uri
Abstract The resilience of internet service is crucial for ensuring consistent communication, situational awareness, facilitating emergency response in our digitally-dependent society. However, due to empirical data constraints, there has been limited research on internet service disruptions during extreme weather events. To bridge this gap, this study utilizes observational datasets on internet performance to quantitatively assess the extent of internet disruption during two recent extreme weather events. Taking Harris County in the United States as the study region, we jointly analyzed the hazard severity and the associated internet disruptions in the context of two extreme weather events. The results show that the hazard events significantly impacted regional internet connectivity. There exists a pronounced temporal synchronicity between the magnitude of disruption and hazard severity: as the severity of hazards intensifies, internet disruptions correspondingly escalate, and eventually return to baseline levels post-event. The spatial analyses show that internet service disruptions can happen even in areas that are not directly impacted by hazards, demonstrating that the repercussions of hazards extend beyond the immediate area of impact. This interplay of temporal synchronization and spatial variance underscores the complex relationships between hazard severity and Internet disruption. Furthermore, the socio-demographic analysis suggests that vulnerable communities, already grappling with myriad challenges, face exacerbated service disruptions during these hazard events, emphasizing the need for prioritized disaster mitigation strategies and interventions for improving the resilience of internet services. To the best of our knowledge, this research is among the first studies to examine the Internet disruptions during hazardous events using a quantitative observational dataset. The insights obtained hold significant implications for city administrators, guiding them towards more resilient and equitable infrastructure planning.  more » « less
Award ID(s):
1846069
PAR ID:
10566442
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Urban Informatics
Volume:
3
Issue:
1
ISSN:
2731-6963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extreme weather-related events are showing how infrastructure disruptions in hinterlands can affect cities. This paper explores the risks to city infrastructure services including transportation, electricity, communication, fuel supply, water distribution, stormwater drainage, and food supply from hinterland hazards of fire, precipitation, post-fire debris flow, smoke, and flooding. There is a large and growing body of research that describes the vulnerabilities of infrastructures to climate hazards, yet this work has not systematically acknowledged the relationships and cross-governance challenges of protecting cities from remote disruptions. An evidence base is developed through a structured literature review that identifies city infrastructure vulnerabilities to hinterland hazards. Findings highlight diverse pathways from the initial hazard to the final impact on an infrastructure, demonstrating that impacts to hinterland infrastructure assets from hazards can cascade to city infrastructure. Beyond the value of describing the impact of hinterland hazards on urban infrastructure, the identified pathways can assist in informing cross-governance mitigation strategies. It may be the case that to protect cities, local governments invest in mitigating hazards in their hinterlands and supply chains. 
    more » « less
  2. null (Ed.)
    Flight delays occur in the air transportation system when disruptive events such as weather, equipment outage, or congestion create an imbalance between system capacity and demand. These cycles of disruptions and subsequent recoveries can be viewed from a dynamical systems perspective: exogenous inputs (convective weather, airspace restrictions, etc.)disrupt the system, inducing delays and inefficiencies from which the system eventually recovers. We study these disruption and recovery cycles through a state-space representation that captures the severity and spatial impact of airport delays. In particular, using US airport delay data from 2008-2017, we first identify representative disruption and recovery cycles. These representative cycles provide insights into the common operational patterns of disruptions and recoveries in the system. We also relate these representative cycles to specific off-nominal events such as airport outages, and elucidate the differing disruption-recovery pathways for various off-nominal events. Finally, we explore temporal trends in terms of when and how the system tends to be disrupted, and the subsequent recovery. 
    more » « less
  3. Louisiana is one of the most hazard-prone states in the U.S., and many of its people are engaged directly or indirectly in agricultural activities that are impacted by an array of weather hazards. However, most hazard impact research on agriculture to date, for Louisiana and elsewhere, has focused on floods and hurricanes. This research develops a method of future crop loss risk assessment due to droughts, extreme low and high temperatures, hail, lightning, and tornadoes, using Louisiana as a case study. This approach improves future crop risk assessment by incorporating historical crop loss, historical and modeled future hazard intensity, cropland extent, population, consumer demand, cropping intensity, and technological development as predictors of future risk. The majority of crop activities occurred and will continue to occur in south-central and northeastern Louisiana along the river basins. Despite the fact that cropland is decreasing across most of the state, weather impacts to cropland are anticipated to increase substantially by 2050. Drought is by far the costliest among the six hazards, accounting for $56.1 million of $59.2 million (∼95%) in 2050-projected crop loss, followed by extreme cold ($1.4 million), extreme heat ($1.0 million), tornadoes ($0.4 million), hail ($0.2 million), and lightning ($0.05 million), respectively. These findings will assist decision-makers to minimize risk and enhance agricultural resilience to future weather hazards, thereby strengthening this economically-important industry in Louisiana and enhancing food security. 
    more » « less
  4. Natural hazards such as hurricanes, floods, and wildfires cause devastating socio-economic impacts on communities. In South Florida, most of these hazards are becoming increasingly frequent and severe because of the warming climate, and changes in vulnerability and exposure, resulting in significant damage to infrastructure, homes, and businesses. To better understand the drivers of these impacts, we developed a bottom-up impact-based methodology that takes into account all relevant drivers for different types of hazards. We identify the specific drivers that co-occurred with socio-economic impacts and determine whether these extreme events were caused by single or multiple hydrometeorological drivers (i.e., compound events). We consider six types of natural hazards: hurricanes, severe storm/thunderstorms, floods, heatwaves, wildfire, and winter weather. Using historical, socio-economic loss data along with observations and reanalysis data for hydrometeorological drivers, we analyze how often these drivers contributed to the impacts of natural hazards in South Florida. We find that for each type of hazard, the relative importance of the drivers varies depending on the severity of the event. For example, wind speed is a key driver of the socio-economic impacts of hurricanes, while precipitation is a key driver of the impacts of flooding. We find that most of the high-impact events in South Florida were compound events, where multiple drivers contributed to the occurrences and impacts of the events. For example, more than 50% of the recorded flooding events were compound events and these contributed to 99% of total property damages and 98% of total crop damages associated with flooding in Miami-Dade County. Our results provide valuable insights into the drivers of natural hazard impacts in South Florida and can inform the development of more effective risk reduction strategies for improving the preparedness and resilience of the region against extreme events. Our bottom-up impact-based methodology can be applied to other regions and hazard types, allowing for more comprehensive and accurate assessments of the impacts of compound hazards. 
    more » « less
  5. null (Ed.)
    Abstract Message diffusion and message persuasion are two important aspects of success for official risk messages about hazards. Message diffusion enables more people to receive lifesaving messages, and message persuasion motivates them to take protective actions. This study helps to identify win-win message strategies by investigating how an under-examined factor, message content that is theoretically important to message persuasion, influences message diffusion for official risk messages about heat hazards on Twitter. Using multilevel negative binomial regression models, the respective and cumulative effects of four persuasive message factors, hazard intensity, health risk susceptibility, health impact , and response instruction on retweet counts were analyzed using a dataset of heat-related tweets issued by U.S. National Weather Service accounts. Two subsets of heat-related tweets were also analyzed: 1) heat warning tweets about current or anticipated extreme heat events and 2) tweets about non-extreme heat events. This study found that heat-related tweets that mentioned more types of persuasive message factors were retweeted more frequently, and so were two subtypes of heat-related tweets. Mentions of hazard intensity also consistently predicted increased retweet counts. Mentions of health impacts positively influenced message diffusion for heat-related tweets and tweets about non-extreme heat events. Mentions of health risk susceptibility and response instructions positively predicted retweet counts for tweets about non-extreme heat events and tweets about official extreme heat warnings respectively. In the context of natural hazards, this research informs practitioners with evidence-based message strategies to increase message diffusion on social media. Such strategies also have the potential to improve message persuasion. 
    more » « less