skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-boundary risks of hinterland hazards to city infrastructure
Abstract Extreme weather-related events are showing how infrastructure disruptions in hinterlands can affect cities. This paper explores the risks to city infrastructure services including transportation, electricity, communication, fuel supply, water distribution, stormwater drainage, and food supply from hinterland hazards of fire, precipitation, post-fire debris flow, smoke, and flooding. There is a large and growing body of research that describes the vulnerabilities of infrastructures to climate hazards, yet this work has not systematically acknowledged the relationships and cross-governance challenges of protecting cities from remote disruptions. An evidence base is developed through a structured literature review that identifies city infrastructure vulnerabilities to hinterland hazards. Findings highlight diverse pathways from the initial hazard to the final impact on an infrastructure, demonstrating that impacts to hinterland infrastructure assets from hazards can cascade to city infrastructure. Beyond the value of describing the impact of hinterland hazards on urban infrastructure, the identified pathways can assist in informing cross-governance mitigation strategies. It may be the case that to protect cities, local governments invest in mitigating hazards in their hinterlands and supply chains.  more » « less
Award ID(s):
1934933 1931363
PAR ID:
10524332
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
4
Issue:
3
ISSN:
2634-4505
Format(s):
Medium: X Size: Article No. 035004
Size(s):
Article No. 035004
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Research purpose. Smart City technologies offer great promise for a higher quality of life, including improved public services, in an era of rapid and intense global urbanization. The use of intelligent or smart information and communication technologies to produce more efficient systems of services in those urban areas, captured under the broad rubric of “smart cities,” also create new vectors of risk and vulnerability. The aim of this article is to raise consideration of an integrated cross-domain approach for risk reduction based on the risks smart cities are exposed to, on the one hand, from natural disasters and, on the other, from cyber-attacks. Design / Methodology / Approach. This contribution describes and explains the risk profile for which smart cities are exposed to both natural disasters and cyber-attacks. The vulnerability of smart city technologies to natural hazards and cyber-attacks will first be summarized briefly from each domain, outlining those respective domain characteristics. Subsequently, methods and approaches for risk reduction in the areas of natural hazards and ICT security will be examined in order to create the basis for an integrated cross-domain approach to risk reduction. Differences are also clearly identified if an adaptation of a risk reduction pattern appears unsuitable. Finally, the results are summarized into an initial, preliminary integrated cross-domain approach to risk reduction. Findings. Risk management in the two domains of ICT security and natural hazards is basically similar. Both domains use a multilayer approach in risk reduction, both have reasonably well-defined regimes and established risk management protocols. At the same time, both domains share a policymaking and policy implementation challenge of the difficulty of appropriately forecasting future risk and making corresponding resource commitments to address future risk. Despite similarities, different concepts like the CIA Triad, community resilience, absorption capacity and so on exist too. Future research of these concepts could lead to improve risk management. Originality / Value / Practical implications. Cyber-attacks on the ICT infrastructure of smart cities are a major vulnerability – but relatively little systematic evaluation exists on the topic. Likewise, ICT infrastructure is vulnerable to natural disasters too – and the risk of more severe natural disasters in the context of a global trend toward massive cities is increasing dramatically. Explicit consideration of the issues associated with cross-domain integration of reduction of interdependent risk is a necessary step in ensuring smart city technologies also serve to promote longer-term community sustainability and resilience. 
    more » « less
  2. Abstract Scholarship is growing on societal transitions, describing radical societal change involving multiple sectors and scales, and transformative governance, describing how public, private, and civil society actors use tools of policy to pursue this fundamental change, aiming to build resiliency and sustainability. Much of this literature has a systems‐level focus and does not closely examine how governance participants, working individually or collectively, can steer a jurisdiction toward or away from transformativeness. This paper offers a corrective, integrating policy entrepreneurship scholarship with transformative governance research to advance understanding of how human agency underpins societal change. Drawing on accounts from 50 interviewees across eight case studies of US cities grappling with flooding hazards, we show how policy entrepreneurship can boost the political and economic resources that city officials rely upon to help propel radical shifts towards greater social, economic, and environmental equity. 
    more » « less
  3. Abstract The resilience of internet service is crucial for ensuring consistent communication, situational awareness, facilitating emergency response in our digitally-dependent society. However, due to empirical data constraints, there has been limited research on internet service disruptions during extreme weather events. To bridge this gap, this study utilizes observational datasets on internet performance to quantitatively assess the extent of internet disruption during two recent extreme weather events. Taking Harris County in the United States as the study region, we jointly analyzed the hazard severity and the associated internet disruptions in the context of two extreme weather events. The results show that the hazard events significantly impacted regional internet connectivity. There exists a pronounced temporal synchronicity between the magnitude of disruption and hazard severity: as the severity of hazards intensifies, internet disruptions correspondingly escalate, and eventually return to baseline levels post-event. The spatial analyses show that internet service disruptions can happen even in areas that are not directly impacted by hazards, demonstrating that the repercussions of hazards extend beyond the immediate area of impact. This interplay of temporal synchronization and spatial variance underscores the complex relationships between hazard severity and Internet disruption. Furthermore, the socio-demographic analysis suggests that vulnerable communities, already grappling with myriad challenges, face exacerbated service disruptions during these hazard events, emphasizing the need for prioritized disaster mitigation strategies and interventions for improving the resilience of internet services. To the best of our knowledge, this research is among the first studies to examine the Internet disruptions during hazardous events using a quantitative observational dataset. The insights obtained hold significant implications for city administrators, guiding them towards more resilient and equitable infrastructure planning. 
    more » « less
  4. Municipalities face increasingly complex challenges from climate change-driven natural hazards that threaten health, infrastructure, and livelihoods. Addressing these risks requires ambitious climate policies that drive the societal transformations advocated in climate policy literature. This study examines factors enabling local governments to adopt ambitious flood risk management. Ambitious climate adaptation policies go beyond minimum regulatory requirements to reduce climate vulnerability and enhance resilience. They facilitate their community’s ability to bounce forward after confronting system disruptions and shocks. Given the dynamic nature of climate challenges, scholars emphasize the importance of having a capacity for transformation over achieving fixed outcomes. Accordingly, this study hypothesizes that city governments with higher Transformative Governance Capacity (TGC) are more likely to implement ambitious flood management strategies. TGC is characterized by behavioural qualities such as being learning-focused, proactive, and risk-accepting. Using survey data from 386 U.S. cities, we operationalize and quantify local governments’ TGC and analyze its association with ambitious flood management practices, as proxied by participation in the Community Rating System (CRS) – a voluntary programme that incentivizes communities to exceed national flood mitigation standards. The findings support the hypothesis that greater TGC is associated with higher levels of involvement in the CRS and higher CRS scores, underscoring the importance of this distinct type of behavioural capacity in addressing escalating climate threats. 
    more » « less
  5. Abstract Cycles of wildfire and rainfall produce sediment‐laden floods that pose a hazard to development and may clog or overtop protective infrastructure, including debris basins and flood channels. The compound, post‐fire flood hazards associated with infrastructure overtopping and clogging are challenging to estimate due to the need to account for interactions between sequences of wildfire and storm events and their impact on flood control infrastructure over time. Here we present data sources and calibration methods to estimate infrastructure clogging and channel overtopping hazards on a catchment‐by‐catchment basis using the Post‐Fire Flood Hazard Model (PF2HazMo), a stochastic modeling approach that utilizes continuous simulation to resolve the effects of antecedent conditions and system memory. Publicly available data sources provide parameter ranges needed for stochastic modeling, and several performance measures are considered for model calibration. With application to three catchments in southern California, we show that PF2HazMo predicts the median of the simulated distribution of peak bulked flows within the 95% confidence interval of observed flows, with an order of magnitude range in bulked flow estimates depending on the performance measure used for calibration. Using infrastructure overtopping data from a post‐fire wet season, we show that PF2HazMo accurately predicts the number of flood channel exceedances. Model applications to individual watersheds reveal where infrastructure is undersized to contain present‐day and future overtopping hazards based on current design standards. Model limitations and sources of uncertainty are also discussed. 
    more » « less