Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$$ and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$$\mathcal { C}$$ , by showing that$$\mathcal { C}$$ admits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class$${\mathcal C}$$ . Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of$${\sum }_{i} x_{i}$$ . We show that for every sparsef, and for all “typical”$$\mathcal { C}$$ , faster#SAT algorithms for$$\mathcal { C}$$ circuits imply lower bounds against the circuit class$$f \circ \mathcal { C}$$ , which may bestrongerthan$$\mathcal { C}$$ itself. In particular:#SAT algorithms fornk-size$$\mathcal { C}$$ -circuits running in 2n/nktime (for allk) implyNEXPdoes not have$$(f \circ \mathcal { C})$$ -circuits of polynomial size.#SAT algorithms for$$2^{n^{{\varepsilon }}}$$ -size$$\mathcal { C}$$ -circuits running in$$2^{n-n^{{\varepsilon }}}$$ time (for someε> 0) implyQuasi-NPdoes not have$$(f \circ \mathcal { C})$$ -circuits of polynomial size. Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJ∘ACC0∘THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0∘THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Connecting physics to systems with modular spin-circuits
                        
                    
    
            Abstract An emerging paradigm in modern electronics is that of CMOS+$${\mathsf{X}}$$ requiring the integration of standard CMOS technology with novel materials and technologies denoted by$${\mathsf{X}}$$ . In this context, a crucial challenge is to develop accurate circuit models for$${\mathsf{X}}$$ that are compatible with standard models for CMOS-based circuits and systems. In this perspective, we present physics-based, experimentally benchmarked modular circuit models that can be used to evaluate a class of CMOS+$${\mathsf{X}}$$ systems, where$${\mathsf{X}}$$ denotes magnetic and spintronic materials and phenomena. This class of materials is particularly challenging because they go beyond conventional charge-based phenomena and involve the spin degree of freedom which involves non-trivial quantum effects. Starting from density matrices—the central quantity in quantum transport—using well-defined approximations, it is possible to obtain spin-circuits that generalize ordinary circuit theory to 4-component currents and voltages (1 for charge and 3 for spin). With step-by-step examples that progressively become more complex, we illustrate how the spin-circuit approach can be used to start from the physics of magnetism and spintronics to enable accurate system-level evaluations. We believe the core approach can be extended to include other quantum degrees of freedom like valley and pseudospins starting from corresponding density matrices. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10566509
- Publisher / Repository:
- NPJ
- Date Published:
- Journal Name:
- npj Spintronics
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2948-2119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the$${H}_{2}$$ and$$LiH$$ molecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.more » « less
- 
            Abstract The prospect of realizing highly entangled states on quantum processors with fundamentally different hardware geometries raises the question: to what extent does a state of a quantum spin system have an intrinsic geometry? In this paper, we propose that both states and dynamics of a spin system have a canonically associatedcoarse geometry, in the sense of Roe, on the set of sites in the thermodynamic limit. For a state$$\phi $$ on an (abstract) spin system with an infinite collection of sitesX, we define a universal coarse structure$$\mathcal {E}_{\phi }$$ on the setXwith the property that a state has decay of correlations with respect to a coarse structure$$\mathcal {E}$$ onXif and only if$$\mathcal {E}_{\phi }\subseteq \mathcal {E}$$ . We show that under mild assumptions, the coarsely connected completion$$(\mathcal {E}_{\phi })_{con}$$ is stable under quasi-local perturbations of the state$$\phi $$ . We also develop in parallel a dynamical coarse structure for arbitrary quantum channels, and prove a similar stability result. We show that several order parameters of a state only depend on the coarse structure of an underlying spatial metric, and we establish a basic compatibility between the dynamical coarse structure associated with a quantum circuit$$\alpha $$ and the coarse structure of the state$$\psi \circ \alpha $$ where$$\psi $$ is any product state.more » « less
- 
            Abstract We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$ -depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$ due to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$ . We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$ ) is infinite and that certain counting problems are$$\#{\textsf{P}}$$ -hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$ depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$ corresponding to depth$$O(\ln ^3 n)$$ . We also show a lower bound of$$\Omega (n \ln n)$$ for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$ (size$$O(n \ln n \ln \ln n)$$ ) using a different model.more » « less
- 
            Abstract We construct divergent models of$$\mathsf {AD}^+$$along with the failure of the Continuum Hypothesis ($$\mathsf {CH}$$) under various assumptions. Divergent models of$$\mathsf {AD}^+$$play an important role in descriptive inner model theory; all known analyses of HOD in$$\mathsf {AD}^+$$models (without extra iterability assumptions) are carried out in the region below the existence of divergent models of$$\mathsf {AD}^+$$. Our results are the first step toward resolving various open questions concerning the length of definable prewellorderings of the reals and principles implying$$\neg \mathsf {CH}$$, like$$\mathsf {MM}$$, that divergent models shed light on, see Question 5.1.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
