Abstract Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.
more »
« less
Pathway Selectivity in 2D Electronic‐Vibrational Spectroscopy with Quantum Light
Abstract Pathway selectivity in quantum spectroscopy with entangled photons is a powerful spectroscopic tool. Phase‐matched signals involving classical light contain contributions from multiple material pathways, whereas quantum spectroscopy may allow the selection of individual pathways. 2D electronic‐vibrational spectroscopy (2DEVS) is a four‐wave mixing technique which employs visible and infrared entangled photons. It is showed how the three contributing pathways—ground state bleach, excited state absorption, and excited state emission—can be separated by photon‐number‐resolved coincidence measurements. Entangled photons thus reveal spectral features not visible in the classical signal, with an enhanced spectral resolution.
more »
« less
- Award ID(s):
- 2246379
- PAR ID:
- 10566543
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 19
- Issue:
- 8
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light–based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes.more » « less
-
The generation, manipulation and quantification of non-classical light, such as quantum-entangled photon pairs, differs significantly from methods with classical light. Thus, quantum measures could be harnessed to give new information about the interaction of light with matter. In this study we investigate if quantum entanglement can be used to diagnose disease. In particular, we test whether brain tissue from subjects suffering from Alzheimer’s disease can be distinguished from healthy tissue. We find that this is indeed the case. Polarization-entangled photons traveling through brain tissue lose their entanglement via a decohering scattering interaction that gradually renders the light in a maximally mixed state. We found that in thin tissue samples (between 120 and 600 micrometers) photons decohere to a distinguishable lesser degree in samples with Alzheimer’s disease than in healthy-control ones. Thus, it seems feasible that quantum measures of entangled photons could be used as a means to identify brain samples with the neurodegenerative disease.more » « less
-
In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.more » « less
-
Photochemistry is a powerful tool for synthesizing important molecules which are challenging to create without light. We report compelling results which indicate that photochemical reaction rates (oxygenation and cycloaddition) can be notably enhanced by utilizing a very small number of entangled photons. Measurements with the same small number of classical photons show the rate of product formation is considerably lower. This suggests that the reaction rate with entangled photons is enhanced by many orders of magnitude. Theoretical calculations show that classical photons and entangled photons excite the photocatalyst to different final excited states. This chemical synthesis approach with entangled photons could have a large impact on our understanding of chemical reactivity and provide new insights into photochemical processes.more » « less
An official website of the United States government
