skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tests for segregation distortion in tetraploid F1 populations
Abstract Key message:In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors. Abstract:Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic selection purposes. A common quality control procedure in these groups is to compare empirical genotype frequencies against those predicted by Mendelian segregation, where SNPs detected to havesegregation distortionare discarded. However, current tests for segregation distortion are insufficient in that they do not account for double reduction and preferential pairing, two meiotic processes in polyploids that naturally change gamete frequencies, leading these tests to detect segregation distortion too often. Current tests also do not account for genotype uncertainty, again leading these tests to detect segregation distortion too often. Here, we incorporate double reduction, preferential pairing, and genotype uncertainty in likelihood ratio and Bayesian tests for segregation distortion. Our methods are implemented in a user-friendly R package, . We demonstrate the superiority of our methods to those currently used in the literature on both simulations and real data.  more » « less
Award ID(s):
2132247
PAR ID:
10566556
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Theoretical and Applied Genetics
Volume:
138
Issue:
1
ISSN:
0040-5752
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hardy–Weinberg proportions (HWP) are often explored to evaluate the assumption of random mating. However, in autopolyploids, organisms with more than two sets of homologous chromosomes, HWP and random mating are different hypotheses that require different statistical testing approaches. Currently, the only available methods to test for random mating in autopolyploids (i) heavily rely on asymptotic approximations and (ii) assume genotypes are known, ignoring genotype uncertainty. Furthermore, these approaches are all frequentist, and so do not carry the benefits of Bayesian analysis, including ease of interpretability, incorporation of prior information, and consistency under the null. Here, we present Bayesian approaches to test for random mating, bringing the benefits of Bayesian analysis to this problem. Our Bayesian methods also (i) do not rely on asymptotic approximations, being appropriate for small sample sizes, and (ii) optionally account for genotype uncertainty via genotype likelihoods. We validate our methods in simulations and demonstrate on two real datasets how testing for random mating is more useful for detecting genotyping errors than testing for HWP (in a natural population) and testing for Mendelian segregation (in an experimental S1 population). Our methods are implemented in Version 2.0.2 of thehwepR package on the Comprehensive R Archive Networkhttps://cran.r‐project.org/package=hwep. 
    more » « less
  2. Abstract BackgroundImaging, cognitive and fluid data have been widely studied to identify quantitative biomarkers that can help predict the status and progression of Alzheimer’s disease (AD). However, it is still an underexplored topic whether there exist subpopulations with different genetic profiles across which the biomarker‐based prediction models may vary. We propose to use the Chow test (Chow 1960 Econometrica 28(3)) to perform genetically stratified analyses for identifying SNP‐based subpopulations coupled with precision AD biomarkers with varying effects on future diagnosis in these subpopulations. The investigation of such SNPs and precision biomarkers may eventually pave the way for increased customization of AD care. MethodParticipants included 1,324 subjects from the ADNI cohort with both AD biomarker and genotyping data available (http://www.pi4cs.org/qt‐pad‐challenge). 30 significant (P < 1.5E‐278) AD SNPs were sourced from (Jansen 2019 NatGen). Chow tests were performed to determine whether each of baseline visit measures of 16 AD biomarkers predicted AD diagnosis at the three‐year visit with varying slopes when stratifying upon the allelic dosage of each of 30 chosen SNPs. Bonferroni correction (P < 1.04E‐4) was employed to correct for multiple comparisons. ResultMultiple SNP‐biomarker pairs showed significant genetically driven deviations in the regression coefficients when predicting diagnosis in three years using baseline biomarkers (Figure 1). Top SNP hits involved rs769449 (Chr 19,APOE) and rs7561528 (Chr 2,LOC105373605), and almost all 16 studied biomarkers demonstrated differential slopes in different genotype groups to predict diagnosis in three years. To examine the details of these top findings, the regression coefficients calculated for each of the five most significant biomarkers of both SNPs were bootstrapped and plotted in Figure 2. ConclusionGenetic analysis of AD candidate SNPs in conjunction with AD biomarker data via the Chow test identified several SNPs coupled with precision AD biomarkers with varying prognosis effects in the corresponding genotype groups. These findings provide valuable information to reveal disease heterogeneity and help facilitate precision medicine. 
    more » « less
  3. Abstract As the global climate crisis continues, predictions concerning how wild populations will respond to changing climate conditions are informed by an understanding of how populations have responded and/or adapted to climate variables in the past. Changes in the local biotic and abiotic environment can drive differences in phenology, physiology, morphology and demography between populations leading to local adaptation, yet the molecular basis of adaptive evolution in wild non‐model organisms is poorly understood. We leverage comparisons between two lineages ofCalochortus venustusoccurring along parallel transects that allow us to identify loci under selection and measure clinal variation in allele frequencies as evidence of population‐specific responses to selection along climatic gradients. We identify targets of selection by distinguishing loci that are outliers to population structure and by using genotype–environment associations across transects to detect loci under selection from each of nine climatic variables. Despite gene flow between individuals of different floral phenotypes and between populations, we find evidence of ecological specialization at the molecular level, including genes associated with key plant functions linked to plant adaptation to California's Mediterranean climate. Single‐nucleotide polymorphisms (SNPs) present in both transects show similar trends in allelic similarity across latitudes indicating parallel adaptation to northern climates. Comparisons between eastern and western populations across latitudes indicate divergent genetic evolution between transects, suggesting local adaptation to either coastal or inland habitats. Our study is among the first to show repeated allelic variation across climatic clines in a non‐model organism. 
    more » « less
  4. Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression. 
    more » « less
  5. Abstract BackgroundGenome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS procedures often suffer from high false positive rates. ResultsWe propose BGWAS, a novel Bayesian variable selection method based on nonlocal priors for linear mixed models specifically tailored for genome-wide association studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed models (LMMs). BGWAS has two steps: screening and model selection. The screening step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian false discovery control to select a set of candidate SNPs. After that, a model selection step searches through the space of LMMs that may have any number of SNPs from the candidate set. A simulation study shows that, when compared to popular GWAS procedures, BGWAS greatly reduces false positives while maintaining the same ability to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case studies: a case study on salt stress in plants, and a case study on alcohol use disorder. ConclusionsBGWAS maintains and in some cases increases the recall of true SNPs while drastically lowering the number of false positives compared to popular SMA procedures. 
    more » « less