skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fine-grain Quantitative Analysis of Demand Paging in Unified Virtual Memory
The abstraction of a shared memory space over separate CPU and GPU memory domains has eased the burden of portability for many HPC codebases. However, users pay for ease of use provided by system-managed memory with a moderate-to-high performance overhead. NVIDIA Unified Virtual Memory (UVM) is currently the primary real-world implementation of such abstraction and offers a functionally equivalent testbed for in-depth performance study for both UVM and future Linux Heterogeneous Memory Management (HMM) compatible systems. The continued advocacy for UVM and HMM motivates improvement of the underlying system. We focus on UVM-based systems and investigate the root causes of UVM overhead, a non-trivial task due to complex interactions of multiple hardware and software constituents and the desired cost granularity. In our prior work, we delved deeply into UVM system architecture and showed internal behaviors of page fault servicing in batches. We provided quantitative evaluation of batch handling for various applications under different scenarios, including prefetching and oversubscription. We revealed that the driver workload depends on the interactions among application access patterns, GPU hardware constraints, and host OS components. Host OS components have significant overhead present across implementations, warranting close attention. This extension furthers our prior study in three aspects: fine-grain cost analysis and breakdown, extension to multiple GPUs, and investigation of platforms with different GPU-GPU interconnects. We take a top-down approach to quantitative batch analysis and uncover how constituent component costs accumulate and overlap, governed by synchronous and asynchronous operations. Our multi-GPU analysis shows reduced cost of GPU-GPU batch workloads compared to CPU-GPU workloads. We further demonstrate that while specialized interconnects, NVLink, can improve batch cost, their benefits are limited by host OS software overhead and GPU oversubscription. This study serves as a proxy for future shared memory systems, such as those that interface with HMM, and the development of interconnects.  more » « less
Award ID(s):
1942182
PAR ID:
10566579
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Architecture and Code Optimization
Volume:
21
Issue:
1
ISSN:
1544-3566
Page Range / eLocation ID:
1 to 24
Subject(s) / Keyword(s):
Unified Virtual Memory, Heterogeneous Memory Management, Virtual Memory, GPGPU, Accelerated Computing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Concurrent kernel execution on GPU has proven an effective technique to improve system throughput by maximizing the resource utilization. In order to increase programmability and meet the increasing memory requirements of data-intensive applications, current GPUs support Unified Virtual Memory (UVM), which provides a virtual memory abstraction with demand paging. By allowing applications to oversubscribe GPU memory, UVM provides increased opportunities to share GPU resources across applications. However, in the presence of applications with competing memory requirements, GPU sharing can lead to performance degradation due to thrashing. NVIDIA's Multiple Process Service (MPS) offers the capability to space share bare metal GPUs, thereby enabling cluster workload managers, such as Slurm, to share a single GPU across MPI ranks with limited control over resource partitioning. However, it is not possible to preempt, schedule, or throttle a running GPU process through MPS. These features would enable new OS-managed scheduling policies to be implemented for GPU kernels to dynamically handle resource contention and offer consistent performance. The contribution of this paper is two-fold. We first show how memory oversubscription can impact the performance of concurrent GPU applications. Then, we propose three methods to transparently mitigate memory interference through kernel preemption and scheduling policies. To implement our policies, we develop our own runtime system (PILOT) to serve as an alternative to NVIDIA's MPS. In the presence of memory over-subscription, we noticed a dramatic improvement in the overall throughput when using our scheduling policies and runtime hints. 
    more » « less
  2. An increasing number of applications benefit from heterogeneous hardware accelerators. Such accelerators often require the application to manually manage memory buffers on devices and transfer data between host and device buffers. A programming model that unifies the virtual address space across the host and devices is appealing because it enables automatic memory transfers and simplifies application-level programming. However, the automatic memory transfers can sometimes be redundant, which decreases performance. NVIDIA’s UVM (unified virtual memory) driver provides a unified virtual address space for CPU-GPU programming. This paper identifies redundant memory transfers (RMTs) as a common performance issue with UVM. To address this issue, this paper proposes a data discard directive, and evaluates two implementations of that directive, UvmDiscard and UvmDiscardLazy. This directive exploits application-level knowledge to avoid RMTs. The implementations were integrated with NVIDIA’s open-source UVM driver to demonstrate their usefulness on real-world CUDA UVM applications. For example, the use of the discard directive increases training throughput by 61.2% on a large deep learning application that oversubscribes GPU memory. 
    more » « less
  3. Trusted execution environments (TEEs) have been proposed to protect GPU computation for machine learning applications operating on sensitive data. However, existing GPU TEE solutions either require CPU and/or GPU hardware modification to realize TEEs for GPUs, which prevents current systems from adopting them, or rely on untrusted system software such as GPU device drivers. In this paper, we propose using CPU secure enclaves, e.g., Intel SGX, to build GPU TEEs without modifications to existing hardware. To tackle the fundamental limitations of these enclaves, such as no support for I/O operations, we design and develop GEVisor, a formally verified security reference monitor software to enable a trusted I/O path between enclaves and GPU without trusting the GPU device driver. GEVisor operates in the Virtual Machine Extension (VMX) root mode, monitors the host system software to prevent unauthorized access to the GPU code and data outside the enclave, and isolates the enclave GPU context from other contexts during GPU computation. We implement and evaluate GEVisor on a commodity machine with an Intel SGX CPU and an NVIDIA Pascal GPU. Our experimental results show that our approach maintains an average overhead of 13.1% for deep learning and 18% for GPU benchmarks compared to native GPU computation while providing GPU TEEs for existing CPU and GPU hardware. 
    more » « less
  4. GPUs are critical for compute-intensive applications, yet emerging workloads such as recommender systems, graph analytics, and data analytics often exceed GPU memory capacity. Existing solutions allow GPUs to use CPU DRAM or SSDs as external memory, and the GPU-centric approach enables GPU threads to directly issue NVMe requests, further avoiding CPU intervention. However, current GPU-centric approaches adopt synchronous I/O, forcing threads to stall during long communication delays. We propose AGILE, a lightweight asynchronous GPU-centric I/O library that eliminates deadlock risks and integrates a flexi- ble HBM-based software cache. AGILE overlaps computation and I/O, improving performance by up to 1.88×across workloads with diverse computation-to-communication ratios. Compared to BaM on DLRM, AGILE achieves up to 1.75×speedup through efficient design and overlapping; on graph applications, AGILE reduces soft- ware cache overhead by up to 3.12×and NVMe I/O overhead by up to 2.85×; AGILE also lowers per-thread register usage by up to 1.32×. 
    more » « less
  5. The many-body correlation function is a fundamental computation kernel in modern physics computing applications, e.g., Hadron Contractions in Lattice quantum chromodynamics (QCD). This kernel is both computation and memory intensive, involving a series of tensor contractions, and thus usually runs on accelerators like GPUs. Existing optimizations on many-body correlation mainly focus on individual tensor contractions (e.g., cuBLAS libraries and others). In contrast, this work discovers a new optimization dimension for many-body correlation by exploring the optimization opportunities among tensor contractions. More specifically, it targets general GPU architectures (both NVIDIA and AMD) and optimizes many-body correlation’s memory management by exploiting a set of memory allocation and communication redundancy elimination opportunities: first, GPU memory allocation redundancy : the intermediate output frequently occurs as input in the subsequent calculations; second, CPU-GPU communication redundancy : although all tensors are allocated on both CPU and GPU, many of them are used (and reused) on the GPU side only, and thus, many CPU/GPU communications (like that in existing Unified Memory designs) are unnecessary; third, GPU oversubscription: limited GPU memory size causes oversubscription issues, and existing memory management usually results in near-reuse data eviction, thus incurring extra CPU/GPU memory communications. Targeting these memory optimization opportunities, this article proposes MemHC, an optimized systematic GPU memory management framework that aims to accelerate the calculation of many-body correlation functions utilizing a series of new memory reduction designs. These designs involve optimizations for GPU memory allocation, CPU/GPU memory movement, and GPU memory oversubscription, respectively. More specifically, first, MemHC employs duplication-aware management and lazy release of GPU memories to corresponding host managing for better data reusability. Second, it implements data reorganization and on-demand synchronization to eliminate redundant (or unnecessary) data transfer. Third, MemHC exploits an optimized Least Recently Used (LRU) eviction policy called Pre-Protected LRU to reduce evictions and leverage memory hits. Additionally, MemHC is portable for various platforms including NVIDIA GPUs and AMD GPUs. The evaluation demonstrates that MemHC outperforms unified memory management by \( 2.18\times \) to \( 10.73\times \) . The proposed Pre-Protected LRU policy outperforms the original LRU policy by up to \( 1.36\times \) improvement. 1 
    more » « less