skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complete Aqueous Defluorination of GenX (Hexafluoropropylene Oxide Dimer Acid Anion) by Pulsed Electrolysis with Polarity Reversal
Abstract Per‐ and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways. In this study, we report the complete defluorination of GenX through electrocatalysis in aqueous LiOH electrolytes, utilizing high surface area anodes consisting of pulsed laser in liquid synthesized [NiFe]‐(OH)₂ nanocatalysts on hydrophilic carbon fiber paper. Additional experiments with industrial nickel–iron alloy demonstrated exceptional stability for >100 hours. Including a brief interval of reversed polarity in pulsed electrolysis and optimizing the pulse train sequence enabled the complete defluorination of GenX. Our facile approach employs only nonprecious materials, does not require bisulfate or other auxiliary chemical agents that are consumed, and thus provides a promising strategy for alleviating the environmental impact of PFAS pollutants.  more » « less
Award ID(s):
2427921
PAR ID:
10566735
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemSusChem
Volume:
18
Issue:
9
ISSN:
1864-5631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Per- and polyfluorinated alkyl substances (PFAS) are persistent contaminants that have been continuously detected in groundwater and drinking water around the globe. Hexafluoropropylene oxide dimer acid (tradename GenX) has been used to substitute traditional PFAS, such as PFOA, but its intense use has caused widespread occurrence in water streams and often in high levels. Here, we evaluate a redox-copolymer, poly(4-methacryloyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl- co -4-methacryloyloxy-2,2,6,6-tetramethylpiperidine) (PTMA- co -PTMPMA), for the selective electrochemical removal of GenX. The amine functional groups promote affinity towards the anionic PFAS, and the redox-active nitroxide radicals provide electrochemical control for adsorption and desorption. Faster kinetics and higher uptake (>475 mg g −1 adsorbent) were obtained with the redox-copolymer when applying 0.8 V vs. Ag/AgCl potential compared to open circuit. The copolymer electrosorbents were evaluated over a wide pH range and diverse water matrices, with electrostatic-based mechanisms dependent on the state of protonation of the PFAS. Moreover, we translated the redox-electrodes from a batch to flow-by cell configuration, showing successful adsorption and release of GenX under flow and electrochemical control. Finally, prolonged exposure of GenX at reduction potentials generated smaller PFAS fragments at the redox-electrodes. To fully defluorinate GenX, the copolymer-functionalized electrodes were coupled with a boron-doped diamond (BDD) counter electrode for integrating separation and defluorination within the same device. The combined system demonstrated close to 100% defluorination efficiency. Thus, we highlight the potential of electroactive redox platforms for the reactive separation of fluorotelomers, and point to future directions for their practical implementation for water treatment. 
    more » « less
  2. GenX, the trade name of hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, is a short-chain PFAS that has emerged as a substitute for the legacy PFAS perfluorooctanoic acid (PFOA). However, GenX has turned out to be more toxic than people originally thought. In order to monitor and regulate water quality according to recently issued drinking water standards for GenX, rapid and ultrasensitive detection of GenX is urgently needed. For the first time, this study reports ultrasensitive (as low as 1 part per billion (ppb)) and fast detection (in minutes) of GenX in water via surface-enhanced Raman spectroscopy (SERS) using a hierarchical nanofibrous SERS substrate, which was prepared by assembling ~60 nm Ag nanoparticles on electrospun nylon-6 nanofibers through a “hot start” method. The findings in this research highlight the potential of the engineered hierarchical nanofibrous SERS substrate for enhanced detection of short-chain PFASs in water, contributing to the improvement of environmental monitoring and management strategies for PFASs. 
    more » « less
  3. Abstract GenX is an environmental contaminant with wide industrial use and found in drinking water. These chemicals have high bioaccumulation and cause adverse health effects in animals and humans. Previous study has shown that pre GenX perfluoroalkyl/polyfluoroalkyl substances (PFAS) and GenX affect immune cells but there is limited study on their impact on innate immune cells (neutrophils) in livestock, such as cows. This study evaluated the effect of GenX exposure on innate and adaptive immune response gene transcription in bovine neutrophils ex vivo. Whole blood was collected using Acid citrate dextrose as a coagulant from cows (n = 5). Neutrophils were isolated using differential centrifugation and hypotonic lysis of red cells. Isolated neutrophils were treated with GenX (100 ng), or untreated (control group) for hour at 37oC, 5%CO2 and 85% relative humidity. After treatment, total RNA was extracted using Trizol reagent, reverse transcribed to cDNA, and quantitative PCR was performed using the innate and adaptive immunity RT2 profiler array (Qiagen) with 84 genes. The qPCR data were analyzed using Livak’s method to calculate fold change (FC) in gene expression between GenX-treated and control neutrophils, and FC >2, (p < 0.05) was considered significant. Normalization of data was performed with GAPDH and Beta Actin as an internal control. Out of the 84 genes tested, 78 were expressed, 25 were upregulated and4 were downregulated, in response to GenX exposure. Exposure to GenX upregulated the expression of TLR8 (FC = 24.75), NOD2 (FC = 7.65), STAT1 (FC = 49.35), HLA-A (FC = 14.07), and NKB1A (FC = 16.52). Treatment with GenX decreased the expression TICAM1 (FC = -2.30), CD86 (FC = -2.27) and RAG1 (FC = -2.50). These results indicate that GenX exposure can activate and modulate the expression of innate and adaptive immune response genes in cow neutrophils. STAT1 is involved in transcriptional regulation and activation of TLR7/8 shifts neutrophil function from phagocytosis to NETosis. Thus, the mechanism of action of GenX on identified gene targets and their function and possible animal health consequences warrants further study. 
    more » « less
  4. null (Ed.)
    Per- and polyfluoroalkyl substances (PFAS) are pollutants that have demonstrated a high level of environmental persistence and are very difficult to remediate. As the body of literature on their environmental effects has increased, so has regulatory and research scrutiny. The widespread usage of PFAS in industrial applications and consumer products, complicated by their environmental release, mobility, fate, and transport, have resulted in multiple exposure routes for humans. Furthermore, low screening levels and stringent regulatory standards that vary by state introduce considerable uncertainty and potential costs in the environmental management of PFAS. The recalcitrant nature of PFAS render their removal difficult, but existing and emerging technologies can be leveraged to destroy or sequester PFAS in a variety of environmental matrices. Additionally, new research on PFAS remediation technologies has emerged to address the efficiency, costs, and other shortcomings of existing remediation methods. Further research on the impact of field parameters such as secondary water quality effects, the presence of co-contaminants and emerging PFAS, reaction mechanisms, defluorination yields, and the decomposition products of treatment technologies is needed to fully evaluate these emerging technologies, and industry attention should focus on treatment train approaches to improve efficiency and reduce the cost of treatment. 
    more » « less
  5. With drinking water regulations forthcoming for per- and polyfluoroalkyl substances (PFAS), the need for cost-effective treatment technologies has become urgent. Adsorption is a key process for removing or concentrating PFAS from water; however, conventional adsorbents operated in packed beds suffer from mass transfer limitations. The objective of this study was to assess the mass transfer performance of a porous polyamide adsorptive membrane for removing PFAS from drinking water under varying conditions. We conducted batch equilibrium and dynamic adsorption experiments for perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluorobutanesulfonic acid, and undecafluoro-2-methyl-3-oxahexanoic acid (i.e., GenX). We assessed various operating and water quality parameters, including flow rate (pore velocity), pH, ionic strength (IS), and presence of dissolved organic carbon. Outcomes revealed that the porous adsorptive membrane was a mass transfer-efficient platform capable of achieving dynamic capacities similar to equilibrium capacities at fast interstitial velocities. The adsorption mechanism of PFAS to the membrane was a mixture of electrostatic and hydrophobic interactions, with pH and IS controlling which interaction was dominant. The adsorption capacity of the membrane was limited by its surface area, but its site density was approximately five times higher than that of granular activated carbon. With advances in molecular engineering to increase the capacity, porous adsorptive membranes are well suited as alternative adsorbent platforms for removing PFAS from drinking water. 
    more » « less