Beginning December 2016, sylvatic yellow fever (YF) outbreaks spread into southeastern Brazil, and Minas Gerais state experienced two sylvatic YF waves (2017 and 2018). Following these massive YF waves, we screened 187 free-living non-human primate (NHPs) carcasses collected throughout the state between January 2019 and June 2021 for YF virus (YFV) using RTqPCR. One sample belonging to a
We performed an arboviral survey in mosquitoes from four endemic Ecuadorian cities (Huaquillas, Machala, Portovelo and Zaruma) during the epidemic period 2016–2018. Collections were performed during the pre-rainy season (2016), peak transmission season (2017) and post-rainy season (2018).
- Award ID(s):
- 1911999
- PAR ID:
- 10566782
- Editor(s):
- Bonizzoni, Mariangela
- Publisher / Repository:
- PLOS Neglected Tropical Diseases.
- Date Published:
- Journal Name:
- PLOS Neglected Tropical Diseases
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1935-2735
- Page Range / eLocation ID:
- e0011908
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Lau, Eric H. (Ed.)
Callithrix , collected in June 2020, was positive for YFV. The viral strain belonged to the same lineage associated with 2017–2018 outbreaks, showing the continued enzootic circulation of YFV in the state. Next, using data from 781 NHPs carcasses collected in 2017–18, we used generalized additive mixed models (GAMMs) to identify the spatiotemporal and host-level drivers of YFV infection and intensity (an estimation of genomic viral load in the liver of infected NHP). Our GAMMs explained 65% and 68% of variation in virus infection and intensity, respectively, and uncovered strong temporal and spatial patterns for YFV infection and intensity. NHP infection was higher in the eastern part of Minas Gerais state, where 2017–2018 outbreaks affecting humans and NHPs were concentrated. The odds of YFV infection were significantly lower in NHPs from urban areas than from urban-rural or rural areas, while infection intensity was significantly lower in NHPs from urban areas or the urban-rural interface relative to rural areas. Both YFV infection and intensity were higher during the warm/rainy season compared to the cold/dry season. The higher YFV intensity in NHPs in warm/rainy periods could be a result of higher exposure to vectors and/or higher virus titers in vectors during this time resulting in the delivery of a higher virus dose and higher viral replication levels within NHPs. Further studies are needed to better test this hypothesis and further compare the dynamics of YFV enzootic cycles between different seasons. -
The role of climate factors on transmission of mosquito-borne infections within urban landscapes must be considered in the context of the pronounced spatial heterogeneity of such environments. Socio-demographic and environmental variation challenge control efforts for emergent arboviruses transmitted via the urban mosquito
Aedes aegypti . We address at high resolution, the spatial heterogeneity of dengue transmission risk in the megacity of Delhi, India, as a function of both temperature and the carrying-capacity of the human environment for the mosquito. Based on previous results predicting maximum mosquitoes per human for different socio-economic typologies, and on remote sensing temperature data, we produce a map of the reproductive number of dengue at a resolution of 250m by 250m. We focus on dengue risk hotspots during inter-epidemic periods, places where chains of transmission can persist for longer. We assess the resulting high-resolution risk map of dengue with reported cases for three consecutive boreal winters. We find that both temperature and vector carrying-capacity per human co-vary in space because of their respective dependence on population density. The synergistic action of these two factors results in larger variation of dengue’s reproductive number than when considered separately, with poor and dense locations experiencing the warmest conditions and becoming the most likely reservoirs off-season. The location of observed winter cases is accurately predicted for different risk threshold criteria. Results underscore the inequity of risk across a complex urban landscape, whereby individuals in dense poor neighborhoods face the compounded effect of higher temperatures and mosquito carrying capacity. Targeting chains of transmission in inter-epidemic periods at these locations should be a priority of control efforts. A better mapping is needed of the interplay between climate factors that are dominant determinants of the seasonality of vector-borne infections and the socio-economic conditions behind unequal exposure. -
null (Ed.)Temperature is widely known to influence the spatio-temporal dynamics of vector-borne disease transmission, particularly as temperatures vary across critical thermal thresholds. When temperature conditions exhibit such ‘transcritical variation’, abrupt spatial or temporal discontinuities may result, generating sharp geographical or seasonal boundaries in transmission. Here, we develop a spatio-temporal machine learning algorithm to examine the implications of transcritical variation for West Nile virus (WNV) transmission in the Los Angeles metropolitan area (LA). Analysing a large vector and WNV surveillance dataset spanning 2006–2016, we found that mean temperatures in the previous month strongly predicted the probability of WNV presence in pools of Culex quinquefasciatus mosquitoes, forming distinctive inhibitory (10.0–21.0°C) and favourable (22.7–30.2°C) mean temperature ranges that bound a narrow 1.7°C transitional zone (21–22.7°C). Temperatures during the most intense months of WNV transmission (August/September) were more strongly associated with infection probability in Cx. quinquefasciatus pools in coastal LA, where temperature variation more frequently traversed the narrow transitional temperature range compared to warmer inland locations. This contributed to a pronounced expansion in the geographical distribution of human cases near the coast during warmer-than-average periods. Our findings suggest that transcritical variation may influence the sensitivity of transmission to climate warming, and that especially vulnerable locations may occur where present climatic fluctuations traverse critical temperature thresholds.more » « less
-
Morrison, Amy C (Ed.)
The Zika virus epidemic of 2015–16, which caused over 1 million confirmed or suspected human cases in the Caribbean and Latin America, was driven by a combination of movement of infected humans and availability of suitable habitat for mosquito species that are key disease vectors. Both human mobility and mosquito vector abundances vary seasonally, and the goal of our research was to analyze the interacting effects of disease vector densities and human movement across metapopulations on disease transmission intensity and the probability of super-spreader events. Our research uses the novel approach of combining geographical modeling of mosquito presence with network modeling of human mobility to offer a comprehensive simulation environment for Zika virus epidemics that considers a substantial number of spatial and temporal factors compared to the literature. Specifically, we tested the hypotheses that 1) regions with the highest probability of mosquito presence will have more super-spreader events during dry months, when mosquitoes are predicted to be more abundant, 2) regions reliant on tourism industries will have more super-spreader events during wet months, when they are more likely to contribute to network-level pathogen spread due to increased travel. We used the case study of Colombia, a country with a population of about 50 million people, with an annual calendar that can be partitioned into overlapping cycles of wet and dry seasons and peak tourism and off tourism seasons that drive distinct cyclical patterns of mosquito abundance and human movement. Our results show that whether the first infected human was introduced to the network during the wet versus dry season and during the tourism versus off tourism season profoundly affects the severity and trajectory of the epidemic. For example, Zika virus was first detected in Colombia in October of 2015. Had it originated in January, a dry season month with high rates of tourism, it likely could have infected up to 60% more individuals and up to 40% more super-spreader events may have occurred. In addition, popular tourism destinations such as Barranquilla and Cartagena have the highest risk of super-spreader events during the winter, whereas densely populated areas such as Medellín and Bogotá are at higher risk of sustained transmission during dry months in the summer. Our research demonstrates that public health planning and response to vector-borne disease outbreaks requires a thorough understanding of how vector and host patterns vary due to seasonality in environmental conditions and human mobility dynamics. This research also has strong implications for tourism policy and the potential response strategies in case of an emergent epidemic.
-
Use of Twitter data to improve Zika virus surveillance in the United States during the 2016 epidemicZika virus (ZIKV) is an emerging mosquito-borne arbovirus that can produce serious public health consequences. In 2016, ZIKV caused an epidemic in many countries around the world, including the United States. ZIKV surveillance and vector control is essential to combating future epidemics. However, challenges relating to the timely publication of case reports significantly limit the effectiveness of current surveillance methods. In many countries with poor infrastructure, established systems for case reporting often do not exist. Previous studies investigating the H1N1 pandemic, general influenza and the recent Ebola outbreak have demonstrated that time- and geo-tagged Twitter data, which is immediately available, can be utilized to overcome these limitations.more » « less