ABSTRACT Climate warming is expected to substantially impact the global landscape of mosquito‐borne disease, but these impacts will vary across disease systems and regions. Understanding which diseases, and where within their distributions, these impacts are most likely to occur is critical for preparing public health interventions. While research has centered on potential warming‐driven expansions in vector transmission, less is known about the potential for vectors to experience warming‐driven stress or even local extirpations. In conservation biology, species risk from climate warming is often quantified through vulnerability indices such as thermal safety margins—the difference between an organism's upper thermal limit and its habitat temperature. Here, we estimated thermal safety margins for 8 mosquito species that are the vectors of malaria, dengue, chikungunya, Zika, West Nile and other major arboviruses, across their known ranges to investigate which mosquitoes and regions are most and least vulnerable to climate warming. We find that several of the most medically important mosquito vector species, includingAe. aegyptiandAn. gambiae, have positive thermal safety margins across the majority of their ranges when realistic assumptions of mosquito behavioral thermoregulation are incorporated. On average, the lowest climate vulnerability, in terms of both the magnitude and duration of thermal safety, was just south of the equator and at northern temperate range edges, and the highest climate vulnerability was in the subtropics. Mosquitoes living in regions including the Middle East, the western Sahara, and southeastern Australia, which are largely comprised of desert and xeric shrubland biomes, have the highest climate vulnerability across vector species.
more »
« less
Mapping geographic and demographic shifts in container breeding mosquito-borne disease transmission suitability in Central and South America in a warming world
Abstract The recent Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC-AR6) report brought into sharp relief the potential health impacts of a changing climate across large geographic regions. It also highlighted the gaps in available evidence to support detailed quantitative assessments of health impacts for many regions. In an increasingly urbanizing world, there is a need for additional information about the risk of mosquito-borne diseases from vectors adapted to human water storage behavior. Specifically, a better understanding of the geographic distribution of disease risk under different scenarios of climate warming and human populations shifts. For the Central and South America chapter of the IPCC Working Group II report, regional extractions of published projections of dengue and Zika risk in a changing climate were generated by one of the authors of this study. In that process, the lack of a compendium of available published risk estimates became apparent. This paper responds to that need and extends the scope of the IPCC report results for Central and South America. We present novel geospatial descriptions of risk for transmission for five mosquito-borne disease systems under future projected climate and demographic scenarios, including the potential risk for malaria in the event of the introduction and establishment of a vector of high global concern,Anopheles stephensi. We then present country-level and IPCC geospatial sub-region risk descriptions under baseline and future projected scenarios. By including demographic projections using the shared socioeconomic pathway (SSP) scenarios, we capture potential future risk in a way that is transparent and straightforward to compare and replicate. The goal of this paper is to report on these model output data and their availability. From a sub-regional perspective, the largest proportional gains in risk will be seen in the Southwestern South America (SWS) sub-region, comprising much of the southwestern coastline, for which suitability forAedes aegyptitransmitted dengue and Zika risk will see massive increases with warming, putting a large number of people at risk under future scenarios. In contrast, at the country level, the largest projected population risk impacts will be seen in Brazil for both arboviral and potential introduced malaria risk, despite some risks projected to decrease as parts of the country are too hot to sustain transmission risk. This paper provides modeled outputs for future use, in addition to broad summary descriptions at regional and country levels.
more »
« less
- Award ID(s):
- 1911999
- PAR ID:
- 10566783
- Publisher / Repository:
- medRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- medRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundAnopheles stephensiis a malaria-transmitting mosquito that has recently expanded from its primary range in Asia and the Middle East, to locations in Africa. This species is a competent vector of bothPlasmodium falciparumandPlasmodium vivaxmalaria. Perhaps most alarming, the characteristics ofAn.stephensi, such as container breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history of malaria risk. MethodsIn this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmission byAn.stephensiwere created, under current and future climate. Temperature-dependent transmission suitability thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly mean temperatures under current and future climatic conditions. These temperature driven transmission models were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future outcomes, to compare with baseline predictions for 2020 populations. ResultsUsing the Global Burden of Disease regions approach revealed that heterogenous regional increases and decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability withAn.stephensipresence. General patterns of poleward expansion for thermal suitability were seen for bothP.falciparumandP.vivaxtransmission potential. ConclusionsUnderstanding the potential suitability forAn.stephensitransmission in a changing climate provides a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and where they occur, can serve as a large-scale call for attention, planning, and monitoring.more » « less
-
Mireji, Paul O (Ed.)Mosquito vectors of pathogens (e.g.,Aedes,Anopheles, andCulexspp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.87). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming. Our results indicate that lab-based and field-based studies are highly complementary; performing the analyses in concert can help to more comprehensively understand vector response to climate change.more » « less
-
The role of climate factors on transmission of mosquito-borne infections within urban landscapes must be considered in the context of the pronounced spatial heterogeneity of such environments. Socio-demographic and environmental variation challenge control efforts for emergent arboviruses transmitted via the urban mosquitoAedes aegypti. We address at high resolution, the spatial heterogeneity of dengue transmission risk in the megacity of Delhi, India, as a function of both temperature and the carrying-capacity of the human environment for the mosquito. Based on previous results predicting maximum mosquitoes per human for different socio-economic typologies, and on remote sensing temperature data, we produce a map of the reproductive number of dengue at a resolution of 250m by 250m. We focus on dengue risk hotspots during inter-epidemic periods, places where chains of transmission can persist for longer. We assess the resulting high-resolution risk map of dengue with reported cases for three consecutive boreal winters. We find that both temperature and vector carrying-capacity per human co-vary in space because of their respective dependence on population density. The synergistic action of these two factors results in larger variation of dengue’s reproductive number than when considered separately, with poor and dense locations experiencing the warmest conditions and becoming the most likely reservoirs off-season. The location of observed winter cases is accurately predicted for different risk threshold criteria. Results underscore the inequity of risk across a complex urban landscape, whereby individuals in dense poor neighborhoods face the compounded effect of higher temperatures and mosquito carrying capacity. Targeting chains of transmission in inter-epidemic periods at these locations should be a priority of control efforts. A better mapping is needed of the interplay between climate factors that are dominant determinants of the seasonality of vector-borne infections and the socio-economic conditions behind unequal exposure.more » « less
-
Identifying climate drivers is essential to understand and predict epidemics of mosquito-borne infections whose population dynamics typically exhibit seasonality and multiannual cycles. Which climate covariates to consider varies across studies, from local factors such as temperature to remote drivers such as the El Niño–Southern Oscillation. With partial wavelet coherence, we present a systematic investigation of nonstationary associations between mosquito-borne disease incidence and a given climate factor while controlling for another. Analysis of almost 200 time series of dengue and malaria around the globe at different geographical scales shows a systematic effect of global climate drivers on interannual variability and of local ones on seasonality. This clear separation of time scales of action enhances detection of climate drivers and indicates those best suited for building early-warning systems.more » « less
An official website of the United States government

