One of the limitations of commercially available metal additive manufacturing (AM) processes is the minimum feature size most processes can achieve. A proposed solution to bridge this gap is microscale selective laser sintering (μ-SLS). The advent of this process creates a need for models which are able to predict the structural properties of sintered parts. While there are currently a number of good SLS models, the majority of these models predict sintering as a melting process which is accurate for microparticles. However, when particles tend to the nanoscale, sintering becomes a diffusion process dominated by grain boundary and surface diffusion between particles. As such, this paper presents an approach to model sintering by tracking the diffusion between nanoparticles on a bed scale. Phase field modeling (PFM) is used in this study to track the evolution of particles undergoing sintering. Changes in relative density are then calculated from the results of the PFM simulations. These results are compared to experimental data obtained from furnace heating done on dried copper nanoparticle inks, and the simulation constants are calibrated to match physical properties. 
                        more » 
                        « less   
                    
                            
                            Molecular dynamics simulations of nanoparticle sintering in additive nanomanufacturing: insights from sintering mechanisms
                        
                    
    
            The sintering behavior of nanoparticles (NPs), which determines the quality of additively nanomanufactured products, differs from conventional understanding established for microparticles. As NPs have a high surface-to-volume ratio, they are subjected to a higher influence from surface tension and a lower melting point than microparticles, resulting in variations in both crystallographic defect-mediated and surface diffusion mechanisms. Meanwhile, the interplay between these controlling mechanisms in NPs has not been well understood, primarily because sintering occurs on the nanosecond timescale, making it an exceptionally transient process. In this work, sintering of both equal and unequal sized Ag and Cu NP doublets with and without misorientation (both tilt and twist) is modeled through molecular dynamics (MD) simulations. The formation and evolution of crystallographic defects, such as vacancies, dislocations, stacking faults, twin boundaries, and grain boundaries, during sintering are investigated. The influence of these defects on plastic deformation and diffusion mechanisms, such as volume diffusion and grain boundary (GB) diffusion, is discussed to elucidate the responsible sintering mechanisms. The surface diffusion mechanism is visualized by using detailed atomic trajectories generated during the sintering process. Finally, the overall effectiveness of all diffusion sintering mechanisms is quantified. This study provides first insights into the complexity and dynamics of NP sintering mechanisms which can aid in the development of accurate predictive models. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2134024
- PAR ID:
- 10566824
- Publisher / Repository:
- OAE Publishing Inc
- Date Published:
- Journal Name:
- Green Manufacturing Open
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2835-7590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Cold sintering densification and coarsening mechanisms are considered from the perspective of the nonequilibrium chemo-mechanical process known in Earth Sciences as pressure solution creep (or dissolutionprecipitation creep). This is an important mechanism of densification and deformation in many geological rock formations in the Earth’s upper crust, and although very slow in nature, it is of direct relevance to the cold sintering process. In cold sintering, we select particulate materials and identify experimental processing parameters to significantly accelerate the kinetics of dissolution-precipitation phenomena, with appropriate consideration of chemistry, applied stress, particle size and temperatures. In the theory of pressure solution, pressure-driven densification is considered to involve the consecutive stages of dissolution at grain contact points, then diffusive transport along the grain boundaries towards open pore surfaces, and then precipitation, all driven by chemical potential gradients. In this study, it is shown that cold sintering of BaTiO3, ZnO and KH2PO4 (KDP) ceramic materials proceeds by the same type of serial process, with the pressure solution creep rate being controlled by the slowest kinetic step. This is demonstrated by the values of activation energy (Ea) for densification, which are in good agreement with the existing literature on dissolution, precipitation, or coarsening. The influence of pressure on the morphology of ZnO grains also supports the pressure solution mechanism. Other characteristics that can be understood qualitatively in terms of pressure solution are observed in the in systems such as BaTiO3 and KDP. We further consider activation energies for grain growth with respect to the precipitation process, as well as evidence for coalescence and Ostwald ripening during cold sintering. For completeness we also consider materials that show significant plastic deformation under compression. Our findings point the way for new advances in densification, microstructural control, and reductions in cold sintering pressure, via the use of appropriate transient solvents in metals and hybrid organic-inorganic systems, such as the Methylammonium lead bromide (MAPBr) perovskite.more » « less
- 
            Cold sintering is an unusually low-temperature process that uses a transient transport phase, which is most often liquid, and an applied uniaxial force to assist in densification of a powder compact. By using this approach, many ceramic powders can be transformed to high-density monoliths at temperatures far below the melting point. In this article, we present a summary of cold sintering accomplishments and the current working models that describe the operative mechanisms in the context of other strategies for low-temperature ceramic densification. Current observations in several systems suggest a multiple-stage densification process that bears similarity to models that describe liquid phase sintering. We find that grain growth trends are consistent with classical behavior, but with activation energy values that are lower than observed for thermally driven processes. Densification behavior in these low-temperature systems is rich, and there is much to be investigated regarding mass transport within and across the liquid-solid interfaces that populate these ceramics during densification. Irrespective of mechanisms, these low temperatures create a new opportunity spectrum to design grain boundaries and create new types of nanocomposites among material combinations that previously had incompatible processing windows. Future directions are discussed in terms of both the fundamental science and engineering of cold sintering.more » « less
- 
            Despite the critical role of sintering phenomena in constraining the long-term durability of nano-sized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in-situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes.more » « less
- 
            Abstract This paper reviews the synthesis of BaTiO3-based ceramic and composites through the cold sintering process. Cold sintering is a densification process that works with a low-temperature mechanism known as pressure solution creep. This provides several opportunities to fabricate BaTiO3into new composite structures that could provide important advanced dielectric properties. Here we revisit the challenges of densifying a material such as BaTiO3that has incongruent dissolution. We consider the issues of surface chemistry, selection of transient flux, core–shell designs in BaTiO3, co-sintering with polymers in the grain boundaries and the technical challenges associated with incorporating all these ideas into tape casting steps for future fabrication of multilayer device structures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    