Sequential vapor doping is a vital process in controlling the electronic transport properties of semiconducting polymers relevant to opto-electronic and thermoelectric applications. Here, we employed an in situ conductivity method to determine the temporal electronic conductivity ( σ ) profile when vapor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) doping poly(3-hexylthiophene) (P3HT) thin films held at a different temperatures. The temporal profile of σ first showed a fast exponential increase, followed by a brief linear increase until reaching a σ max , and followed by a slow decay in σ . The σ profile were correlated to structural changes through a combination UV-vis-NIR spectroscopy, X-ray scattering, and Raman spectroscopy. We find that the timing for σ max , and subsequent drop in σ of P3HT:F4TCNQ thin films corresponds to the evolution of doping in the crystalline (ordered) and amorphous (disordered) domains. Specifically, Raman spectroscopy resonant at 785 nm highlighted that the crystalline domains reached their saturated doping level near σ max and subsequent smaller level of doping occurred in regions in the disordered domains. Overall, this study emphasizes the importance of granular understanding of σ and the corresponding structural changes in the crystalline and amorphous domains.
more »
« less
This content will become publicly available on January 17, 2026
Confocal Raman Microscopy for Measuring In Situ Temperature-Dependent Structural Changes in Poly(Ethylene Oxide) Thin Films
Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions. By resolving complex overlapping sets of spectra, SMCR analysis reveals that the thermal transitions of 50 µm thick PEO films comprise two structural phases: an ordered crystalline phase and a disordered amorphous phase. The ordered structure of the crystalline PEO film entirely disappears as the polymer is heated; conversely, the disordered structure of the amorphous PEO film reverts to the ordered structure as the polymer is cooled. Broadening of the Raman bands was observed in PEO films above the melting temperature (67 °C), while sharpening of bands was observed below the crystallization temperature (45 °C). The temperatures at which these spectral changes occurred were in good agreement with differential scanning calorimetry (DSC) measurements, especially during the melting transition. The results illustrate that in situ Raman microscopy coupled with SMCR analysis is a powerful approach for unraveling complex structural changes in thin polymer films during melting and crystallization processes. Furthermore, we show that confocal Raman microscopy opens opportunities to apply the methodology to interrogate the structural features of PEO or other surface-supported polymer films as thin as 2 µm, a thickness regime beyond the reach of conventional thermal analysis techniques.
more »
« less
- Award ID(s):
- 1922956
- PAR ID:
- 10566877
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Applied Spectroscopy
- ISSN:
- 0003-7028
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallized films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications.more » « less
-
To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur in the various phase transformations even though the rate of temperature change is much slower than the PCM device operation. Other critical processes such as void formation, grain evolution and the cause of resistance drift can thereby be related to changes in structure and chemistry. Materials characterization is performed using Tecnai F30 and Titan ETEM microscopes, operating at 300kV. Both the microscopes can accept the same Protochips heating holders. The K2 direct electron detector camera equipped with the ETEM allows high-speed video recording (1600 f/s) of structural changes occurring in these materials upon heating and cooling. In this presentation, we will describe the effect of heating thin films of different thickness and composition, the changes in crystallinity and grain size, and how these changes correlate with changes in the electrical properties of the films. We will emphasize that it is always important to use low-dose and/or beam blanking techniques to distinguish changes induced by the beam from those due to the heating or introduction of an electric current.more » « less
-
A magnetron co-sputtering system was used for producing nickel-doped Ge2Sb2Te5 (GST-Ni) thin films. The nickel content in the thin film was adjusted by the ratio of the plasma discharge power applied to the GST and nickel targets, as well as a physical shuttering technique to further control the nickel deposition rate. The doping concentration of the film was con firmed using Energy Dispersion Spectroscopy (EDS) technique. Results from a four-point probe measurement indicate that the nickel doping can reduce the resistivity of GST in the amorphous state by nearly three orders of magnitude. The dopant's influence on crystallization behavior was studied by analyzing X-Ray Diffraction (XRD) patterns of the pure GST and GST-Ni at different annealing temperatures. To examine the structural changes due to the nickel dopant, the thin films were investigated with the aid of Raman scattering. Additionally, we extracted the optical constants for both the amorphous and crystalline states of undoped-GST and GST-Ni films by ellipsometry. The results indicate that at low doping concentrations nickel does not appreciably affect the optical constants, but dramatically improves the electrical conductivity. Therefore, nickel-doping of GST a viable method for designing optical devices for lower operating voltages at higher switching speeds.more » « less
-
null (Ed.)Epitaxial films of vanadium dioxide (VO 2 ) on rutile TiO 2 substrates provide a means of strain-engineering the transition pathways and stabilizing of the intermediate phases between monoclinic (insulating) M1 and rutile (metal) R end phases. In this work, we investigate structural behavior of epitaxial VO 2 thin films deposited on isostructural MgF 2 (001) and (110) substrates via temperature-dependent Raman microscopy analysis. The choice of MgF 2 substrate clearly reveals how elongation of V–V dimers accompanied by the shortening of V–O bonds triggers the intermediate M2 phase in the temperature range between 70–80 °C upon the heating–cooling cycles. Consistent with earlier claims of strain-induced electron correlation enhancement destabilizing the M2 phase our temperature-dependent Raman study supports a small temperature window for this phase. The similarity of the hysteretic behavior of structural and electronic transitions suggests that the structural transitions play key roles in the switching properties of epitaxial VO 2 thin films.more » « less