Title: Feasibility using a compact fiber optic Sagnac interferometer for non-contact soft tissue surface mechanical wave speed detection
The Sagnac interferometer offers distinct advantages in vibrational wave detection. In this study, an air-coupled transducer and a compact fiber-optic Sagnac interferometer were developed for non-contact elasticity characterization in biological tissues. Given the challenge of limited light collection by a compact fiber optic Sagnac interferometer in biological tissues, this study aims to explore the potential of using a compact Sagnac interferometer to measure vibrational waves in biological tissues. The speeds of the generated vibrational surface waves in tissue-mimic phantoms were measured. Measurement errors caused by cross-correlation wave tracking were analyzed, and the performance of the integrated system was characterized. The results demonstrated the effectiveness of the integrated system and the cross-correlation algorithm in tracing the speed of vibrational surface waves in tissue-mimicking phantoms. They suggested potential applications for the non-invasive, contactless characterization of the mechanical properties in soft biological tissues. more »« less
Rizzo, Piervincenzo; Su, Zhongqing; Ricci, Fabrizio; Peters, Kara J
(Ed.)
he further signal processing for wave signal extraction as in displacement-based detection systems. However, due to both interfering lights coming from sample surface, the collected light in a fiber-optic-based Sagnac interferometer system is very weak when applied to biological tissue, where the refractive index of tissue and air are close. The objective of this paper is to study the feasibility using a compact fiber-optic Sagnac interferometer to detect vibrational waves on a biological tissue surface. An actuator made with a 10mm x 10mm x 3mm piezoelectric chip loaded on a 3D-printed polymer-made prism-shaped wedge (1cm x1cm x1cm) was used for ultrasound surface wave excitation. A bulk copolymer-in-oil phantom (100mm diameter with 27mm height) was used to mimic biological tissues. A compact fiber-optic-based interferometer was used to detect the propagation of surface waves in the tissue mimicking phantom and the wave propagation speeds were determined based on the wave detection. Young’s modulus was calculated based on the measured wave speed on the phantom surface. A tensile testing machine was used to measure the Young’s modulus in a compression mode as a comparison. The results were compared.
Lai, Voon Hui; Miller, Meghan S; Jiang, Chengxin; Yang, Yan; Magrini, Fabrizio; Zhan, Zhongwen; McQueen, Herb
(, The Seismic Record)
Abstract Distributed acoustic sensing (DAS) offers a cost effective, nonintrusive method for high-resolution near-surface characterization in urban environments where conventional geophysical surveys are limited or nonexistent. However, passive imaging with DAS in urban settings presents challenges such as strong diurnal traffic noise, nonlinear array geometry, and poor fiber coupling to the ground. We repurposed a dark fiber in Melbourne, Australia, into a 25 km DAS array that traces busy arterial roads, tram routes, and orthogonal sections. By employing noise cross correlation and array beamforming, we calculated dispersion curves and successfully inverted for a near-surface shear-wave velocity model down to 100 meters. Stationary seismic sources are maximized by selecting daytime traffic signals, thereby recovering surface waves and reducing interference from acoustic waves from man-made structures in the subsurface. Poorly coupled channels, which are linked to fiber maintenance pits, are identified through cross-correlation amplitudes. The dispersion curve calculation further considers the channel orientation to avoid mixing Rayleigh and Love waves. Using a trans-dimensional Markov chain Monte Carlo sampling approach, we achieved effective model inversion without a prior reference model. The resulting near-surface profile aligns with mapped lithology and reveals previously undocumented lithological variation.
Song, Anthony A; Chen, Mason T; Bobrow, Taylor L; Durr, Nicholas J
(, Journal of Biomedical Optics)
Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment. Thus, there is a need for compact structured illumination techniques to enable accurate, quantitative endogenous contrast in minimally invasive surgery. Aim: We introduce a compact, two-camera laparoscope that incorporates both active stereo depth estimation and speckle-illumination SFDI (si-SFDI) to map profile-corrected, pixel-level absorption (μa), and reduced scattering (μ′s) optical properties in images of tissues with complex geometries. Approach: We used a multimode fiber-coupled 639-nm laser illumination to generate high-contrast speckle patterns on the object. These patterns were imaged through a modified commercial stereo laparoscope for optical property estimation via si-SFDI. Compared with the original si-SFDI work, which required ≥10 images of randomized speckle patterns for accurate optical property estimations, our approach approximates the DC response using a laser speckle reducer (LSR) and consequently requires only two images. In addition, we demonstrate 3D profilometry using active stereo from low-coherence RGB laser flood illumination. Sample topography was then used to correct for measured intensity variations caused by object height and surface angle differences with respect to a calibration phantom. The low-contrast RGB speckle pattern was blurred using an LSR to approximate incoherent white light illumination. We validated profile-corrected si-SFDI against conventional SFDI in phantoms with simple and complex geometries, as well as in a human finger in vivo time-series constriction study. Results: Laparoscopic si-SFDI optical property measurements agreed with conventional SFDI measurements when measuring flat tissue phantoms, exhibiting an error of 6.4% for absorption and 5.8% for reduced scattering. Profile-correction improved the accuracy for measurements of phantoms with complex geometries, particularly for absorption, where it reduced the error by 23.7%. An in vivo finger constriction study further validated laparoscopic si-SFDI, demonstrating an error of 8.2% for absorption and 5.8% for reduced scattering compared with conventional SFDI. Moreover, the observed trends in optical properties due to physiological changes were consistent with previous studies. Conclusions: Our stereo-laparoscopic implementation of si-SFDI provides a simple method to obtain accurate optical property maps through a laparoscope for flat and complex geometries. This has the potential to provide quantitative endogenous contrast for minimally invasive surgical guidance.
Seismic imaging and monitoring of the near-surface structure are crucial for the sustainable development of urban areas. However, standard seismic surveys based on cabled or autonomous geophone arrays are expensive and hard to adapt to noisy metropolitan environments. Distributed acoustic sensing (DAS) with pre-existing telecom fiber optic cables, together with seismic ambient noise interferometry, have the potential to fulfill this gap. However, a detailed noise wavefield characterization is needed before retrievingcoherent waves from chaotic noise sources. We analyze local seismic ambient noise by tracking five-month changes in signal-to-noise ratio (SNR) of Rayleigh surface wave estimated from traffic noise recorded by DAS along the straight university campus busy road. We apply the seismic interferometry method to the 800 m long part of the Penn State Fiber-Optic For Environment Sensing (FORESEE) array. We evaluate the 160 virtual shot gathers (VSGs) by determining the SNR using the slant-stack technique. We observe strong SNR variations in time and space. We notice higher SNR for virtual source points close to road obstacles. The spatial noise distribution confirms that noise energy focuses mainly on bumps and utility holes. We also see the destructive impact of precipitation, pedestrian traffic, and traffic along main intersections on VSGs. A similar processing workflow can be applied to various straight roadside fiber optic arrays in metropolitan areas.
Kawasaki, Yuki; Iwaguchi, Shoki; Ishikawa, Tomohiro; Nishizawa, Atsushi; Kitaguchi, Masaaki; Yamagata, Yutaka; Chen, Yanbei; Wu, Bin; Shimizu, Ryuma; Umemura, Kurumi; et al
(, Classical and Quantum Gravity)
Abstract The detection of low-frequency gravitational waves on Earth requires the reduction of displacement noise, which dominates the low-frequency band. One method to cancel test mass displacement noise is a neutron displacement-noise-free interferometer (DFI). This paper proposes a new neutron DFI configuration, a Sagnac-type neutron DFI, which uses a Sagnac interferometer in place of the Mach–Zehnder interferometer. We demonstrate that a sensitivity of the Sagnac-type neutron DFI is higher than that of a conventional neutron DFI with the same interferometer scale. This configuration is particularly significant for neutron DFIs with limited space for construction and limited flux from available neutron sources.
Chen, Gui, and Xia, Jinjun.
"Feasibility using a compact fiber optic Sagnac interferometer for non-contact soft tissue surface mechanical wave speed detection". Biomedical Optics Express 16 (2). Country unknown/Code not available: Optical Society of America. https://doi.org/10.1364/BOE.534396.https://par.nsf.gov/biblio/10566894.
@article{osti_10566894,
place = {Country unknown/Code not available},
title = {Feasibility using a compact fiber optic Sagnac interferometer for non-contact soft tissue surface mechanical wave speed detection},
url = {https://par.nsf.gov/biblio/10566894},
DOI = {10.1364/BOE.534396},
abstractNote = {The Sagnac interferometer offers distinct advantages in vibrational wave detection. In this study, an air-coupled transducer and a compact fiber-optic Sagnac interferometer were developed for non-contact elasticity characterization in biological tissues. Given the challenge of limited light collection by a compact fiber optic Sagnac interferometer in biological tissues, this study aims to explore the potential of using a compact Sagnac interferometer to measure vibrational waves in biological tissues. The speeds of the generated vibrational surface waves in tissue-mimic phantoms were measured. Measurement errors caused by cross-correlation wave tracking were analyzed, and the performance of the integrated system was characterized. The results demonstrated the effectiveness of the integrated system and the cross-correlation algorithm in tracing the speed of vibrational surface waves in tissue-mimicking phantoms. They suggested potential applications for the non-invasive, contactless characterization of the mechanical properties in soft biological tissues.},
journal = {Biomedical Optics Express},
volume = {16},
number = {2},
publisher = {Optical Society of America},
author = {Chen, Gui and Xia, Jinjun},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.