skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biophysics Concept Inventory Survey: An Assessment in Biophysical Undergraduate Education
Since the Force Concept Inventory in 1992, many concept inventories have been developed to cover classical scientific fields. However, there is a lack of concept inventories for interdisciplinary fields, such as biophysics. We introduce a Biophysics Concept Inventory Survey (BCIS), a 20-question, multiple-choice survey to measure student gains in biophysical concepts. The BCIS contains 5 question classifications: remember, understand, apply, analyze, and create, as well as question concepts divided into primarily physics or primarily biology questions. We administered the BCIS to 3 cohorts of students over 4 years. Each cohort participated in a 10-week summer Research Experience for Undergraduates (REU) in biophysics. We compared the presurvey (before REU) and postsurvey (after REU) scores to determine the fraction of the maximum possible gain or loss realized. Our analysis of the results suggests that the BCIS shows no biases based on sex or ethnicity. Further, we used the BCIS to show that 69% of the REU participants showed gains in biophysics concepts, with most of the total participant mean of gain occurring at higher levels of Bloom’s taxonomy: create and analyze. Overall, participants obtain slightly higher scores in physics (8% increase) than biology (5% increase) when comparing the pre- and postscores. The coronavirus disease 2019 pandemic allows a splitting of prepandemic and postpandemic cohorts, with the postpandemic cohort showing significantly larger gains than the prepandemic students. These results show that the BCIS, with question classifications and concepts, probes the students’ ability to apply knowledge to various biophysical science topics without underlying biases and enables instructors to obtain answers to important questions about the effectiveness of the educational programs. The BCIS fills a gap for interdisciplinary concept inventories.  more » « less
Award ID(s):
2349368
PAR ID:
10566948
Author(s) / Creator(s):
; ;
Publisher / Repository:
Biophysical Society
Date Published:
Journal Name:
The Biophysicist
Volume:
5
Issue:
1
ISSN:
2578-6970
Page Range / eLocation ID:
55 to 66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates how faculty, student, and course features are linked to student outcomes in Learning Assistant (LA) supported courses. Over 4,500 students and 17 instructors from 13 LA Alliance member institutions participated in the study. Each participating student completed an online concept inventory at the start (pre) and end (post) of their term. The physics concept inventories included Force and Motion Concept Evaluation (FMCE) and the Brief Electricity and Magnetism Assessment (BEMA). Concepts inventories from the fields of biology and chemistry were also included. Our analyses utilize hierarchical linear models that nest student level data (e.g. pre/post scores and gender) within course level data (e.g. discipline and course enrollment) to build models that examine student outcomes across institutions and disciplines. We report findings on the connections between students' outcomes and their gender, race, and time spent working with LAs as well as instructors' experiences with LAs. 
    more » « less
  2. This study investigates how Learning Assistants (LAs) and related course features are associated with inequities in student learning in introductory university physics courses. 2,868 physics students’ paired pre- and post-test scores on concept inventories from 67 classes in 16 LA Alliance member institutions are examined in this investigation. The concept inventories included the Force Concept Inventory, Force and Motion Conceptual Evaluation, and the Conceptual Survey of Electricity and Magnetism. Our analyses include a multiple linear regression model that examines the impact of student (e.g. gender and race) and course level variables (e.g. presence of LAs and Concept Inventory used) on student learning outcomes (Cohen’s d effect size) across classroom contexts. The presence of LAs was found to either remove or invert the traditional learning gaps between students from dominant and non-dominant populations. Significant differences in student performance were also found across the concept inventories. 
    more » « less
  3. Parks, Samantha T (Ed.)
    ABSTRACT The Microbiology Concept Inventory is an assessment tool derived from the fundamental statements created by the American Society for Microbiology. This two-tier, multiple-choice question inventory requires students to choose the most correct answer for each question and provide a brief justification of their reasoning. Educators can utilize this tool to identify common misconceptions held by students and adjust curriculum to address and prevent the persistence of student misconceptions. Over the course of 5 years, the Microbiology Concept Inventory was annually administered to undergraduate students enrolled in entry-level, mid-level, and senior capstone microbiology courses at a mid-western rural university. Analysis was completed to compare course, year, majors and minors, gender, ethnicity, and cumulative GPA. Results of this study showed a significant difference in Microbiology Concept Inventory scores between students with high cumulative GPAs (3.5–4.0) and students with comparatively lower cumulative GPAs (2.5–2.99, 3.0–3.49). Results between the other demographic categories revealed statistically different scores in favor of white students, but no differences in scores between genders. The results suggest evidence of ethnic bias, but no gender bias as measured by the Microbiology Concept Inventory. Additionally, significant differences in scores across cohorts are indicative of improvements in the curricula due to prior targeted changes. Analysis of concept inventory results can guide curriculum changes for course instructors. Implementation of curriculum changes can enrich students’ academic success. 
    more » « less
  4. This paper presents the design and analysis of a pilot problem set deployed to engineering students to assess their retention of physics knowledge at the start of a statics course. The problem set was developed using the NSF-IUSE (grant #2315492) Learning Map project (LMap) and piloted in the spring and fall of 2024. The LMap process is rooted in the Analysis, Design, Development, Implementation, and Evaluation (ADDIE) model [1] and Backward Design [2,3], extending these principles to course sequences to align learning outcomes, assessments, and instructional practices. The primary motivation for this problem set (Statics Knowledge Inventory, SKI) was to evaluate students' understanding and retention of physics concepts at the beginning of a statics course. The SKI includes a combination of multiple-choice questions (MCQ) and procedural problems, filling a gap in widely-used concept inventories for physics and statics, such as the Force Concept Inventory (FCI) and Statics Concept Inventory (SCI), which evaluate learning gains within a course, rather than knowledge retention across courses. Using the LMap analysis and instructor consultations, we identified overlapping concepts and topics between Physics and Statics courses, referred to here as “interdependent learning outcomes” (ILOs). The problem set includes 15 questions—eight MCQs and seven procedural problems. Unlike most concept inventories, procedural problems were added to provide insight into students’ problem-solving approach and conceptual understanding. These problems require students to perform calculations, demonstrate their work, and assess their conceptual understanding of key topics, and allow the instructors to assess essential prerequisite skills like drawing free-body diagrams (FBDs), computing forces and moments, and performing basic vector calculation and unit conversions. Problems were selected and adapted from physics and statics textbooks, supplemented by instructor-designed questions to ensure full coverage of the ILOs. We used the revised 2D Bloom’s Taxonomy [4] and a 3D representation of it [5] to classify each problem within a 6x4 matrix (six cognitive processes x four knowledge dimensions). This classification provided instructors and students with a clear understanding of the cognitive level required for each problem. Additionally, we measured students’ perceived confidence and difficulty in each problem using two questions on a 3-point Likert scale. The first iteration of the problem set was administered to 19 students in the spring 2024 statics course. After analyzing their performance, we identified areas for improvement and revised the problem set, removing repetitive MCQs and restructuring the procedural problems into scaffolded, multi-part questions with associated rubrics for evaluation. The revised version, consisting of five MCQs and six procedural problems, was deployed to 136 students in the fall 2024 statics course. A randomly selected subset of student answers from the second iteration was graded and analyzed to compare with the first. This analysis will inform future efforts to evaluate knowledge retention and transfer in key skills across sequential courses. In collaboration with research teams developing concept inventories for mechanics courses, we aim to integrate these procedural problems into future inventories. 
    more » « less
  5. This study investigated whether and how Learning Assistant (LA) support is linked to student outcomes in Physics courses nationwide. Paired student concept inventory scores were collected over three semesters from 3,753 students, representing 69 courses, and 40 instructors, from 17 LA Alliance member institutions. Each participating student completed an online concept inventory at the beginning (pre) and end (post) of each term. The physics concept inventories tested included the Force Concept Inventory (FCI), Conceptual Survey of Electricity and Magnetism (CSEM), Force and Motion Concept Evaluation (FMCE) and the Brief Electricity and Magnetism Assessment (BEMA). Across instruments, Cohen’s d effect sizes were 1.4 times higher, on average, for courses supported by LAs compared to courses without LA support. Preliminary findings indicate that physics students' outcomes may be most effective when LA support is utilized in laboratory settings (1.9 times higher than no LA support) in comparison to lecture (1.4 times higher), recitations (1.5 times higher), or unknown uses (1.3 times higher). Additional research will inform LA-implementation best practices across disciplines. 
    more » « less