skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Antioxidant defense in cotton under environmental stresses: Unraveling the crucial role of a universal defense regulator for enhanced cotton sustainability
Award ID(s):
1658709
PAR ID:
10567125
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Plant Physiology and Biochemistry
Volume:
204
Issue:
C
ISSN:
0981-9428
Page Range / eLocation ID:
108141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stem water potential (Ψstem) is a key indicator for assessing plant water status, which is crucial in understanding plant health and productivity. However, existing measurement methods for Ψstem, characterized by destructiveness and intermittency, limit its applicability. Microtensiometers, an emerging plant-based sensor, offer continuous monitoring capabilities and have shown success in certain vine and tree species. In this study, we investigate the efficacy of microtensiometers ability to monitor the Ψstemof cotton (Gossypium hirsutumL.) under three distinct irrigation treatments in Maricopa, Arizona, an extremely hot, arid environment. We analyze the diurnal dynamics of Ψstemacross the irrigation regimes and compare these measurements with midday leaf water potentials (Ψleaf) obtained using a dewpoint potentiometer. Our results demonstrate that the microtensiometer-derived Ψstemclosely follows known diurnal patterns of Ψleaf, tracking with vapor pressure deficit (VPD) and responding to variations in irrigation levels and soil moisture content. Time cross-correlation analysis reveals an 80-minute lag in Ψstemresponse to changing VPD under non-water limiting conditions, which shortens under water-limiting conditions. Additionally, we establish a robust linear relationship (R2adj = 0.82) between Ψstemand Ψleaf, with this relationship strengthening as water availability decreases. Notably, we observe mean gradients of 1.2 and 0.06 MPa between soil vs. stem and stem vs. leaf water potentials, respectively. Moreover, Ψstemdata proves to be more sensitive in distinguishing between irrigation treatments earlier in the growing season compared to Ψleaf, leaf temperature and leaf gas exchange parameters. These findings highlight the utility of microtensiometers as valuable tools for monitoring water status in smaller-stemmed row crops such as cotton. 
    more » « less
  2. Abstract Textile waste presents a major burden on the environment, contributing to climate change and chemical pollution as toxic dyes and finishing chemicals enter the environment through landfill leachate. Moreover, the majority of textile waste reaching landfills is discarded clothing, which could be reused or recycled. Here we investigate environmentally benign morphology changing of cotton textiles as a precursor for reintegration into a circular materials economy. At 50 °C using low concentrations of acids and bases, the interfiber structures of woven cotton were successfully degraded when treated with the following sequence of chemical treatment: citric acid, urea, sodium hydroxide, ammonium hydroxide, and sodium nitrate. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) reveal separation of the constituent fibers without depolymerization of the cellulose structure, and streaming potential measurements indicate that surface charge effects play a key role in facilitating degradation. The proposed reaction procedures show feasibility of effective waste-fabric recycling processes without chemically intensive processes, in which staple fibers are recovered and can be re-spun into new textiles. 
    more » « less