The growing textile industry is polluting the environment and producing waste at an alarming rate. The wasteful consumption of fast fashion has made the problem worse. The waste management of textiles has been ineffective. Spurred by the urgency of reducing the environmental footprint of textiles, this review examines advances and challenges to separate important textile constituents such as cotton (which is mostly cellulose), polyester (polyethylene terephthalate), and elastane, also known as spandex (polyurethane), from blended textiles. Once separated, the individual fiber types can meet the demand for sustainable strategies in textile recycling. The concepts of mechanical, chemical, and biological recycling of textiles are introduced first. Blended or mixed textiles pose challenges for mechanical recycling which cannot separate fibers from the blend. However, the separation of fiber blends can be achieved by molecular recycling, i.e., selectively dissolving or depolymerizing specific polymers in the blend. Specifically, the separation of cotton and polyester through dissolution, acidic hydrolysis, acid-catalyzed hydrothermal treatment, and enzymatic hydrolysis is discussed here, followed by the separation of elastane from other fibers by selective degradation or dissolution of elastane. The information synthesized and analyzed in this review can assist stakeholders in the textile and waste management sectors in mapping out strategies for achieving sustainable practices and promoting the shift towards a circular economy.
more »
« less
Thermochemical degradation of cotton fabric under mild conditions
Abstract Textile waste presents a major burden on the environment, contributing to climate change and chemical pollution as toxic dyes and finishing chemicals enter the environment through landfill leachate. Moreover, the majority of textile waste reaching landfills is discarded clothing, which could be reused or recycled. Here we investigate environmentally benign morphology changing of cotton textiles as a precursor for reintegration into a circular materials economy. At 50 °C using low concentrations of acids and bases, the interfiber structures of woven cotton were successfully degraded when treated with the following sequence of chemical treatment: citric acid, urea, sodium hydroxide, ammonium hydroxide, and sodium nitrate. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) reveal separation of the constituent fibers without depolymerization of the cellulose structure, and streaming potential measurements indicate that surface charge effects play a key role in facilitating degradation. The proposed reaction procedures show feasibility of effective waste-fabric recycling processes without chemically intensive processes, in which staple fibers are recovered and can be re-spun into new textiles.
more »
« less
- Award ID(s):
- 1948422
- PAR ID:
- 10237483
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Fashion and Textiles
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2198-0802
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Ionic liquid based fiber welding has been used to attach the metal−organic framework (MOF) UiO-66-NH2to cotton fibers. The results show that by controlling the extent of the welding process, it is possible to produce fibers that contain a high surface area (approximately 50−100 m2/ g), an X-ray diffraction pattern consistent with UiO-66-NH2, and fibers that are chemically reactive to dimethyl 4-nitrophenyl phosphate (DMNP), a common chemical weapon simulant. The ionic liquid/MOF welding solution can be applied by directly placing the fabric in the welding solution or by utilizing an airbrushing technique. Both welding techniques are shown to be scalable with results collected on approximately 1×1, 5 ×5, and 15.5×15.5 in. swatches. The results are also applicable to weaving methods where the MOF is welded to individual threads and subsequently woven into a textile. The results provide an industrially scalable method of attaching a wide variety of MOFs to cotton textiles, which does not require synthesizing the MOF in the presence of the textile.more » « less
-
Cellulose-based conductive composite fibers hold great promise in smart wearable applications, given cellulose's desirable properties for textiles. Blending conductive fillers with cellulose is the most common means of fiber production. Incorporating a high content of conductive fillers is demanded to achieve desirable conductivity. However, a high filler load deteriorates the processability and mechanical properties of the fibers. Here, developing wet-spun cellulose-based fibers with a unique side-by-side (SBS) structure via sustainable processing is reported. Sustainable sources (cotton linter and post-consumer cotton waste) and a biocompatible intrinsically conductive polymer (i.e., polyaniline, PANI) were engineered into fibers containing two co-continuous phases arranged side-by-side. One phase was neat cellulose serving as the substrate and providing good mechanical properties; another phase was a PANI-rich cellulose blend (50 wt%) affording electrical conductivity. Additionally, an eco-friendly LiOH/urea solvent system was adopted for the fiber spinning process. With the proper control of processing parameters, the SBS fibers demonstrated high conductivity and improved mechanical properties compared to single-phase cellulose and PANI blended fibers. The SBS fibers demonstrated great potential for wearable e-textile applications.more » « less
-
Abstract ReSpool is a transdisciplinary partnership among academia, government, industry, and nonprofit entities created in 2022 to develop and demonstrate a transferable model for the recycling of postconsumer textile and apparel waste into new textile products. ReSpool's engineering and creative teams have innovated proprietary technologies including the Fiber Shredder, which enables textile‐to‐fiber shredding for high‐value applications, and a set of processes for the manufacture of yarns and nonwoven textiles from recycled fibers. ReSpool's circular supply chains begin with discarded clothing collected by Goodwill organizations in the two test regions and involves partnerships with Goodwill to recruit and train workers and install in‐house recycling operations. ReSpool then works with textile manufacturers and home goods and apparel retailers on high‐value applications through waste‐led materials and product development. ReSpool takes a systems‐based approach to sustainability research and problem‐solving. This article briefly overviews the “systems thinking” framework and demonstrates how core principles of this framework structure the team's objectives, activities, and innovations. Finally, the article contributes to current debates regarding systems thinking and circularity by presenting a rationale for systems‐based sustainability research and practice ratcheted to regional systems. By focusing on regional factors, connections, and opportunities, ReSpool aims to maximize its flexibility, relevance, and impact while enabling tailored replication of the model across diverse communities. In this way, ReSpool offers an innovative, circular materials model for the textile and apparel industries, turning textile waste into a source of business innovation, sustainable economic development, and skills training for communities across the country.more » « less
-
Due to the increasing speed of production, sale, and discard of home and apparel products, recycling of textiles is important for supporting the UN’s Sustainable Development Goal of Responsible Consumption and Production. In 2020, textile production was estimated to be responsible for 35% of primary microplastics released into the environment, 20% of global clean water pollution, and 10% of global greenhouse gas emissions. In 2018 the US generated around 17 million tons of textile waste and only 14.7% was recycled. Drum-operated textile shredding, a commonly utilized mechanical textile recycling technique, is not yet fully characterized. Even though there are many shredding machines that perform this process, the parameters that influence high-quality fiber output have not been researched; discovering ways to improve reusable fiber output is still a challenge. This research investigates the theory behind carded (toothed) drum textile shredding including how to improve the process outcome in order to obtain more reusable fiber and fewer textile pieces and dust. The mechanics of the textiles and fibers under tensile and shear stresses from the drums and drum teeth respectively were described to relate the textile material failure behavior to shredding process fiber outputs. Focusing on the interactions of the feeding drums and shredding drum, the drum-textile and tooth-yarn failure mechanics were characterized. By decreasing the teeth size and increasing the relative speed between drums, it is expected to increase the shear failure ratio, thus improving the shredding system. With this, it is expected that manufacturing new and better materials from recycled fibers becomes a possibility.more » « less
An official website of the United States government
