Investigating the viral ecology and contribution to the microbial ecology in full-scale mesophilic anaerobic digesters
- Award ID(s):
- 1804158
- PAR ID:
- 10567148
- Publisher / Repository:
- Chemosphere
- Date Published:
- Journal Name:
- Chemosphere
- Volume:
- 349
- Issue:
- C
- ISSN:
- 0045-6535
- Page Range / eLocation ID:
- 140743
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Background Obtaining an optimal flower temperature can be crucial for plant reproduction because temperature mediates flower growth and development, pollen and ovule viability, and influences pollinator visitation. The thermal ecology of flowers is an exciting, yet understudied field of plant biology. Scope This review focuses on several attributes that modify exogenous heat absorption and retention in flowers. We discuss how flower shape, orientation, heliotropic movements, pubescence, coloration, opening–closing movements and endogenous heating contribute to the thermal balance of flowers. Whenever the data are available, we provide quantitative estimates of how these floral attributes contribute to heating of the flower, and ultimately plant fitness. Outlook Future research should establish form–function relationships between floral phenotypes and temperature, determine the fitness effects of the floral microclimate, and identify broad ecological correlates with heat capture mechanisms.more » « less
-
Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.more » « less
-
The accelerating pace of global change is driving a biodiversity extinction crisis ( 1 ) and is outstripping our ability to track, monitor, and understand ecosystems, which is traditionally the job of ecologists. Ecological research is an intensive, field-based enterprise that relies on the skills of trained observers. This process is both time-consuming and expensive, thus limiting the resolution and extent of our knowledge of the natural world. Although technology will never replace the intuition and breadth of skills of the experienced naturalist ( 2 ), ecologists cannot ignore the potential to greatly expand the scale of our studies through automation. The capacity to automate biodiversity sampling is being driven by three ongoing technological developments: the commoditization of small, low-power computing devices; advances in wireless communications; and an explosion in automated data-recognition algorithms in the field of machine learning. Automated data collection and machine learning are set to revolutionize in situ studies of natural systems.more » « less
An official website of the United States government

