Prior research has shown that digital games can enhance STEM education by providing learners with immersive and authentic scientific experiences. However, optimizing the learning outcomes of students engaged in game-based environments requires aligning the game design with diverse student needs. Therefore, an in-depth understanding of player behavior is crucial for identifying students who need additional support or modifications to the game design. This study applies an Ordered Network Analysis (ONA)—a specific kind of Epistemic Network Analysis (ENA)—to examine the game trace log data of student interactions, to gain insights into how learning gains relate to the different ways that students move through an open-ended virtual world for learning microbiology. Our findings reveal that differences between students with high and low learning gains are mediated by their prior knowledge. Specifically, level of prior knowledge is related to behaviors that resemble wheel-spinning, which warrant the development of future interventions. Results also have implications for discovery with modeling approaches and for enhancing in-game support for learners and improving game design.
more »
« less
When New Experience Leads to New Knowledge: A Computational Framework for Formalizing Epistemically Transformative Experiences
Abstract The discovery of a new kind of experience can teach an agent what that kind of experience is like. Such a discovery can be epistemically transformative, teaching an agent something they could not have learned without having that kind of experience. However, learning something new does not always require new experience. In some cases, an agent can merely expand their existing knowledge using, e.g., inference or imagination that draws on prior knowledge. We present a computational framework, grounded in the language of partially observable Markov Decision Processes (POMDPs), to formalize this distinction. We propose that epistemically transformative experiences leave a measurable “signature” distinguishing them from experiences that are not epistemically transformative. For epistemically transformative experiences, learning in a new environment may be comparable to “learning from scratch” (since prior knowledge has become obsolete). In contrast, for experiences that are not transformative, learning in a new environment can be facilitated by prior knowledge of that same kind (since new knowledge can be built upon the old). We demonstrate this in a synthetic experiment inspired by Edwin Abbott’s Flatland, where an agent learns to navigate a 2D world and is subsequently transferred either to a 3D world (epistemically transformative change) or to an expanded 2D world (epistemically non-transformative change). Beyond the contribution to understanding epistemic change, our work shows how tools in computational cognitive science can formalize and evaluate philosophical intuitions in new ways.
more »
« less
- Award ID(s):
- 2106690
- PAR ID:
- 10567191
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Open Mind
- Volume:
- 8
- ISSN:
- 2470-2986
- Page Range / eLocation ID:
- 1291 to 1311
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computer vision and other biometrics data science applications have commenced a new project of profiling people. Rather than using 'transaction generated information', these systems measure the 'real world' and produce an assessment of the 'world state' - in this case an assessment of some individual trait. Instead of using proxies or scores to evaluate people, they increasingly deploy a logic of revealing the truth about reality and the people within it. While these profiling knowledge claims are sometimes tentative, they increasingly suggest that only through computation can these excesses of reality be captured and understood. This article explores the bases of those claims in the systems of measurement, representation, and classification deployed in computer vision. It asks if there is something new in this type of knowledge claim, sketches an account of a new form of computational empiricism being operationalised, and questions what kind of human subject is being constructed by these technological systems and practices. Finally, the article explores legal mechanisms for contesting the emergence of computational empiricism as the dominant knowledge platform for understanding the world and the people within it.more » « less
-
rior research has shown that digital games can enhance STEM education by providing learners with immersive and authentic scientific experiences. However, optimizing the learning outcomes of students engaged in game-based environments requires aligning the game design with diverse student needs. Therefore, an in-depth understanding of player behavior is crucial for identifying students who need additional support or modifications to the game design. This study applies an Ordered Network Analysis (ONA)—a specific kind of Epistemic Network Analysis (ENA)—to examine the game trace log data of student interactions, to gain insights into how learning gains relate to the different ways that students move through an open-ended virtual world for learning microbiology. Our findings reveal that differences between students with high and low learning gains are mediated by their prior knowledge. Specifically, level of prior knowledge is related to behaviors that resemble wheel-spinning, which warrant the development of future interventions. Results also have implications for discovery with modeling approaches and for enhancing in-game support for learners and improving game design.more » « less
-
Complex causal networks underlie many real-world problems, from the regulatory interactions between genes to the environmental patterns used to understand climate change. Computational methods seek to infer these causal networks using observational data and domain knowledge. In this paper, we identify three key requirements for inferring the structure of causal networks for scientific discovery: (1) robustness to noise in observed measurements; (2) scalability to handle hundreds of variables; and (3) flexibility to encode domain knowledge and other structural constraints. We first formalize the problem of joint probabilistic causal structure discovery. We develop an approach using probabilistic soft logic (PSL) that exploits multiple statistical tests, supports efficient optimization over hundreds of variables, and can easily incorporate structural constraints, including imperfect domain knowledge. We compare our method against multiple well-studied approaches on biological and synthetic datasets, showing improvements of up to 20% in F1-score over the best performing baseline in realistic settings.more » « less
-
Young learners today are constantly influenced by AI recommendations, from media choices to social connections. The resulting "filter bubble" can limit their exposure to diverse perspectives, which is especially problematic when they are not aware this manipulation is happening or why. To address the need to support youth AI literacy, we developed "BeeTrap", a mobile Augmented Reality (AR) learning game designed to enlighten young learners about the mechanisms and the ethical issue of recommendation systems. Transformative Experience model was integrated into learning activities design, focusing on making AI concepts relevant to students’ daily experiences, facilitating a new understanding of their digital world, and modeling real-life applications. Our pilot study with middle schoolers in a community-based program primarily investigated how transformative structured AI learning activities affected students’ understanding of recommendation systems and their overall conceptual, emotional, and behavioral changes toward AI.more » « less