skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New approaches to secondary metabolite discovery from anaerobic gut microbes
AbstractThe animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilizeinsilicotools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism. Key points• Gut microbial secondary metabolites have therapeutic and biotechnological potential• Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery• Anaerobic biofoundries enable high-throughput workflows for metabolite discovery Graphical abstract  more » « less
Award ID(s):
2400327
PAR ID:
10567217
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Applied Microbiology and Biotechnology
Volume:
109
Issue:
1
ISSN:
1432-0614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rawls, John F (Ed.)
    ABSTRACT Intestinal helminth parasite (IHP) infection induces alterations in the composition of microbial communities across vertebrates, although how gut microbiota may facilitate or hinder parasite infection remains poorly defined. In this work, we utilized a zebrafish model to investigate the relationship between gut microbiota, gut metabolites, and IHP infection. We found that extreme disparity in zebrafish parasite infection burden is linked to the composition of the gut microbiome and that changes in the gut microbiome are associated with variation in a class of endogenously produced signaling compounds, N-acylethanolamines, that are known to be involved in parasite infection. Using a statistical mediation analysis, we uncovered a set of gut microbes whose relative abundance explains the association between gut metabolites and infection outcomes. Experimental investigation of one of the compounds in this analysis reveals salicylaldehyde, which is putatively produced by the gut microbePelomonas, as a potent anthelmintic with activity againstPseudocapillaria tomentosaegg hatching, bothin vitroandin vivo. Collectively, our findings underscore the importance of the gut microbiome as a mediating agent in parasitic infection and highlight specific gut metabolites as tools for the advancement of novel therapeutic interventions against IHP infection. IMPORTANCEIntestinal helminth parasites (IHPs) impact human health globally and interfere with animal health and agricultural productivity. While anthelmintics are critical to controlling parasite infections, their efficacy is increasingly compromised by drug resistance. Recent investigations suggest the gut microbiome might mediate helminth infection dynamics. So, identifying how gut microbes interact with parasites could yield new therapeutic targets for infection prevention and management. We conducted a study using a zebrafish model of parasitic infection to identify routes by which gut microbes might impact helminth infection outcomes. Our research linked the gut microbiome to both parasite infection and to metabolites in the gut to understand how microbes could alter parasite infection. We identified a metabolite in the gut, salicylaldehyde, that is putatively produced by a gut microbe and that inhibits parasitic egg growth. Our results also point to a class of compounds, N-acyl-ethanolamines, which are affected by changes in the gut microbiome and are linked to parasite infection. Collectively, our results indicate the gut microbiome may be a source of novel anthelmintics that can be harnessed to control IHPs. 
    more » « less
  2. Abstract IntroductionFungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natural product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. ObjectivesTo prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. MethodsThe 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their biosynthetic pathways were identified using metabologenomics. ResultsWe isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 µM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated—Omics datasets. ConclusionsThis work demonstrates how the incorporation of biochemometrics as a third dimension into the metabologenomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery. 
    more » « less
  3. Abstract All animals carry specialized microbiomes, and their gut microbiota are continuously released into the environment through excretion of waste. Here we propose themeta-gutas a novel conceptual framework that addresses the ability of the gut microbiome released from an animal to function outside the host and alter biogeochemical processes mediated by microbes. We demonstrate this dynamic in the hippopotamus (hippo) and the pools they inhabit. We used natural field gradients and experimental approaches to examine fecal and pool water microbial communities and aquatic biogeochemistry across a range of hippo inputs. Sequencing using 16S RNA methods revealed community coalescence between hippo gut microbiomes and the active microbial communities in hippo pools that received high inputs of hippo feces. The shared microbiome between the hippo gut and the waters into which they excrete constitutes ameta-gutsystem that could influence the biogeochemistry of recipient ecosystems and provide a reservoir of gut microbiomes that could influence other hosts. We propose thatmeta-gutdynamics may also occur where other animal species congregate in high densities, particularly in aquatic environments. 
    more » « less
  4. Wilkins, Laetitia_G E (Ed.)
    ABSTRACT Anaerolineae, particularly uncultured representatives, are one of the most abundant microbial groups in coastal salt marshes, dominating the belowground rhizosphere, where over half of plant biomass production occurs. However, this class generally remains poorly understood, particularly in a salt marsh context. Here, novelAnaerolineaemetagenome-assembled genomes (MAGs) were generated from the salt marsh rhizosphere representingAnaerolineales,Promineifilales, JAAYZQ01, B4-G1, JAFGEY01, UCB3, andCaldilinealesorders. Metagenome and metatranscriptome reads were mapped to annotated MAGs, revealing nearly allAnaerolineaeencoded and transcribed genes required for oxidation of carbon compounds ranging from simple sugars to complex polysaccharides, fermentation, and carbon fixation. Furthermore, the majority ofAnaerolineaeexpressed genes involved in anaerobic and aerobic respiration and secondary metabolite production. The data revealed that the belowground salt marshAnaerolineaein the rhizosphere are important players in carbon cycling, including degradation of simple carbon compounds and more recalcitrant plant material, such as cellulose, using a diversity of electron acceptors and represent an unexplored reservoir of novel secondary metabolites.IMPORTANCEGiven that coastal salt marshes are recognized as biogeochemical hotspots, it is fundamentally important to understand the functional role of the microbiome in this ecosystem. In particular,Anaerolineaeare abundant members of the salt marsh rhizosphere and have been identified as core microbes, suggesting they play an important functional role. Yet, little is known about the metabolic pathways encoded and expressed in this abundant salt marsh clade. Using an ‘omics-based approach, we determined thatAnaerolineaeare capable of oxidizing a range of carbon compounds, including simple sugars to complex carbon compounds, while also encoding fermentation and carbon fixation. Surprisingly,Anaerolineaeencoded and transcribed genes involved in aerobic respiration, which was unexpected given the reduced nature of the salt marsh rhizosphere. Finally, the majority ofAnaerolineaeappear to be involved in secondary metabolite production, suggesting that this group represents an unexplored reservoir of novel and important secondary metabolites. 
    more » « less
  5. Kaltenpoth, Martin (Ed.)
    ABSTRACT Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiontSnodgrassella alvi. We are also able to engineer the genomes of multiple strains ofS. alviand another species,Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont,Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout inS. alviusing this approach isrecA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCEHoney bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health. 
    more » « less