skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Spatiotemporal gravity changes at the Santorini Volcanic complex and their interpretation
Understanding the complex dynamics of volcanic systems demands a multidimensional approach that combines geophysics, geology, and geodetics. In this study, we examine observed spatiotemporal gravity changes within the Santorini volcanic complex from 1975 to 2014. The historical data indicates that gravity has been increasing continuously since at least 1966 until our latest measurements in 2014, albeit with a decreasing rate of increase over time. Utilizing gravity inversion of various gravity datasets and evidence from other studies, we explore different scenarios to shed light on the underlying processes. Our preferred interpretation involves both a magmatic episode and continuous evolution of the shallow structure. We find that the 2011-12 unrest period resulted from the intrusion of ~3.3x1011 kg of basaltic magma at 3 km depth near the previously identified Mogi source. We attribute the continuous gravity increase beneath Nea Kameni to a density increases at about 1350 m depth. We infer these are a result of hydrothermal fluctuations, degassing, and/or vesicle collapse within the stored magma. Units: 1mGal = 10-5 m/s2 (SI)  more » « less
Award ID(s):
2023338
PAR ID:
10567271
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Quaternary Science Advances
Date Published:
Journal Name:
Quaternary Science Advances
Volume:
13
Issue:
C
ISSN:
2666-0334
Page Range / eLocation ID:
100140
Subject(s) / Keyword(s):
Santorini Spatiotemporal gravity changes Magma source Volcano Greece Caldera
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Constraining the architecture of complex 3D volcanic plumbing systems within active rifts, and their impact on rift processes, is critical for examining the interplay between faulting, magmatism and magmatic fluids in developing rift segments. The Natron basin of the East African Rift System provides an ideal location to study these processes, owing to its recent magmatic-tectonic activity and ongoing active carbonatite volcanism at Oldoinyo Lengai. Here, we report seismicity and fault plane solutions from a 10 month-long temporary seismic network spanning Oldoinyo Lengai, Naibor Soito volcanic field and Gelai volcano. We locate 6,827 earthquakes with M L −0.85 to 3.6, which are related to previous and ongoing magmatic and volcanic activity in the region, as well as regional tectonic extension. We observe seismicity down to ∼17 km depth north and south of Oldoinyo Lengai and shallow seismicity (3–10 km) beneath Gelai, including two swarms. The deepest seismicity (∼down to 20 km) occurs above a previously imaged magma body below Naibor Soito. These seismicity patterns reveal a detailed image of a complex volcanic plumbing system, supporting potential lateral and vertical connections between shallow- and deep-seated magmas, where fluid and melt transport to the surface is facilitated by intrusion of dikes and sills. Focal mechanisms vary spatially. T-axis trends reveal dominantly WNW-ESE extension near Gelai, while strike-slip mechanisms and a radial trend in P-axes are observed in the vicinity of Oldoinyo Lengai. These data support local variations in the state of stress, resulting from a combination of volcanic edifice loading and magma-driven stress changes imposed on a regional extensional stress field. Our results indicate that the southern Natron basin is a segmented rift system, in which fluids preferentially percolate vertically and laterally in a region where strain transfers from a border fault to a developing magmatic rift segment. 
    more » « less
  2. The origin of gaps or zoning in the composition of erupted products is critical to understanding how sub-volcanic reservoirs operate. We characterize the compositionally zoned magma that produced the 2053 ± 50 cal. yr BP Paso Puyehue Tephra from the Antillanca Volcanic Complex in the Andean Southern Volcanic Zone (SVZ). The 3.7 km3 Paso Puyehue Tephra is zoned from dacite (69 wt% SiO2) lapilli and ash comprising the lowermost 80% of the deposit that abruptly transitions upward into basaltic andesite scoria (54 wt% SiO2) making up the remaining ~20%. Variations in whole-rock, matrix glass, and mineral compositions through the deposit allow us to estimate pre-eruptive magma storage conditions and to develop a model of how this magma body was generated. Our findings suggest that amphibole-bearing basaltic andesitic magma stored at ~8.0 ± 1.3 km depth fractionally crystallized and cooled from 1048 ± 1.1 to 811 ± 28.6 ◦C under highly oxidizing conditions to produce silicic a melt that upon extraction and rise, pooled at ~6.4 ± 1.2 km depth at temperatures as low as 810 ◦C before eruption. MELTS models suggest that crystallization of a basaltic andesite parent magma with 4 wt% dissolved H2O can produce the dacite under conditions predicted by mineral thermobarometers with phase compositions comparable to those measured in minerals. Pervasive normal zoning at the rims of plagioclase crystals—most pronounced at the transition between dacite and basaltic andesite, and compatible vs. incompatible trace element concentrations, suggest that magma mixing was limited and likely occurred at the interface between the dacitic and basaltic andesitic magmas during ascent within the conduit upon eruption. Compositionally bimodal tephras are increasingly recognized throughout the SVZ with several interpreted to reflect basaltic recharge and mixing into extant rhyolitic reservoirs. In further contrast to other SVZ rhyolitic products, e.g., from the nearby Cord´on Callue and Mocho Choshuenco volcanoes, the Paso Puyehue magma was highly oxidized. This may reflect enhanced delivery of H2O from the subducting plate into the mantle wedge, which in turn may facilitate efficient extraction and separation of buoyant, low-viscosity rhyolitic melt from crystal-rich basaltic andesitic parent magmas and the co-eruption of both end members. 
    more » « less
  3. Abstract Monitoring of active volcanic systems is a challenging task due in part to the trade‐offs between collection of high‐quality data from multiple techniques and the high costs of acquiring such data. Here we show that magnetic data can be used to monitor volcanoes by producing similar data to gravimetric techniques at significantly lower cost. The premise of this technique is that magma and wall rock above the Curie temperature are magnetically “transparent,” but not stationary within the crust. Subsurface movements of magma can affect the crustal magnetic field measured at the surface. We construct highly simplified magnetic models of four volcanic systems: Mount Saint Helens (1980), Axial Seamount (2015–2020), Kīlauea (2018), and Bárðarbunga (2014). In all cases, observed or inferred changes to the magmatic system would have been detectable by modern magnetometers. Magnetic monitoring could become common practice at many volcanoes, particularly in developing nations with high volcanic risk. 
    more » « less
  4. Abstract With substantial postglacial rhyolite eruptions and ongoing rapid uplift, the Laguna del Maule volcanic field in the southern Andes provides an exceptional opportunity to study the dynamics of an active silicic magmatic system. Using 4,093Parrivals from 137 distant earthquakes recorded by 44 local stations over∼2.25 years, we conduct teleseismic tomography to image the crustal structure down to 40 km below the volcanic field. A prominent low‐velocity body at depths between∼0 and 12 km below sea level (b.s.l.), characterized by a volume of∼500 km3and a peak anomaly of−400 m/s (∼9%), overlaps the location of the upper‐crustal magma reservoir detected in recent gravity and surface wave tomography studies. Its estimated averagePwave velocity of∼4.6 km/s corresponds to an average melt fraction of about 14% and a melt volume of∼70 km3. Petrologic observations are also consistent with generation and storage of rhyolitic melts at depths corresponding to the anomalous zone. Moreover, the tomographic results support a lower crust zone of MASH (melting, assimilation, storage, and homogenization) from a depth of∼25 km to the base of the model, which likely reflects a deep crustal source of magma that contributes to and incubates the shallow silicic reservoir. 
    more » « less
  5. Abstract Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1–3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed—rather than preceded—by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface. 
    more » « less