Rejuvenated volcanism is a worldwide phenomena occurring on many volcanic oceanic islands in all of the major ocean basins (e.g., Samoa, Madeira, Mauritius). This plume-related volcanism follows the main edifice-building stage after a hiatus of variable duration (e.g., 0.6–2 Myrs in Hawai‘i). Hawaiian rejuvenated basalts typically have high MgO contents (>10 wt%) and carry upper mantle xenoliths. Thus, these magmas are assumed to have ascended rapidly through the crust. The basalts erupted along the Koko Rift in Honolulu, Hawai‘i are unusual in their large range in MgO (5.4–11.4 wt%), absence of mantle xenoliths and history of magma mixing. The Koko Rift is the youngest area of rejuvenated volcanism in Hawai‘i (67 ± 2 ka) and its best developed rejuvenation-stage rift system (15-km long rift with 12 major and several minor subaerial and submarine eruptive centers). Here we report on the first systematic petrologic investigation of the Koko Rift basalts to better understand this most recent example of Hawaiian rejuvenated volcanism. New textural and mineral chemical evidence indicates magma was stored along the rift and later mixed to produce the subaerial lavas with 10–11 wt% MgO. The lower MgO (5–6 wt%) subaerial lavas were probably byproducts of the initial hybrid magma, subsequent crystal fractionation and then a second magma mixing event. The absence of mantle xenoliths in Koko Rift lavas and the relatively moderate forsterite contents (84–85%) in the higher MgO lavas may be related to the development of a crustal magma system within the rift. The record of crustal magma storage and crystal fractionation, and two magma mixing episodes in the Koko Rift lavas is unique among Hawaiian rejuvenated volcanism.
more »
« less
This content will become publicly available on May 1, 2026
Persistent High-Pressure Magma Storage beneath a Near-Ridge Ocean Island Volcano (Isla Floreana, Galápagos)
Abstract Volcanic evolution in ocean island settings is often controlled by variations in the chemistry and volumetric flux of magma from an underlying mantle plume. In locations such as Hawaiʻi or Réunion, this results in predictable variations in magma chemistry, the rate of volcanic activity, and the depth of magma storage with volcanic age and/or distance from the centre of plume upwelling. These systems, however, represent outliers in global plume volcanism due to their high buoyancy flux, frequent eruptions, and large distance from any plate boundary. Most mantle plumes display clear interaction with nearby plate boundaries, influencing the dynamics of solid plume material in the upper mantle and the distribution of melt across regions of active volcanism. Yet, the influence of plume–ridge interaction and plume–ridge distance on the structure, characteristics, and evolution of magma storage beneath ocean island volcanoes remains under constrained. In this study, we consider the evolution of magmatic systems in the Galápagos Archipelago, a region of mantle plume volcanism located 150–250 km south of the Galápagos Spreading Centre (GSC), focusing on the depth of magma storage during the eastward transport of volcanic systems away from the centre of plume upwelling. Geochemical analysis of gabbro xenoliths from Isla Floreana in the southeastern Galápagos suggest that they formed at ~2–2.5 Ma, when the island was located close to the centre of plume upwelling. These nodules, therefore, provide rare insights into the evolution of volcanic systems in the Galápagos Archipelago, tracking variations in the magma system architecture as the Nazca plate carried Isla Floreana eastwards, away from the plume centre. Mineral thermobarometry, thermodynamic modelling, and CO2 fluid inclusion barometry reveal that Isla Floreana’s plume-proximal stage of volcanic activity—recorded in the gabbro xenoliths—was characterized by the presence of high-pressure magma storage (>25 km), below the base of the crust. In fact, we find no petrological evidence that sustained, crustal-level magma storage ever occurred beneath Isla Floreana. Our results contrast with the characteristics of volcanic systems in the western Galápagos above the current centre of plume upwelling, where mid-crust magma storage has been identified. We propose that this change in magmatic architecture of plume-proximal volcanic centres in the Galápagos—from high-pressure mantle storage at 2.5 Ma to mid-crustal storage at the present day—is controlled by the variations in plume–ridge distance. Owing to the northward migration of the GSC, the distance separating the plume stem and GSC is not constant, and was likely <100 km at 2.5 Ma, significantly less than the current plume–ridge distance of 150–250 km. We propose that smaller plume–ridge distances result in greater diversion of plume-material to the GSC, ‘starving’ the eastern Galápagos islands of magma during their initial formation and restricting the ability for these systems to develop long-lived crustal magma reservoirs.
more »
« less
- PAR ID:
- 10599149
- Publisher / Repository:
- Journal of Petrology
- Date Published:
- Journal Name:
- Journal of Petrology
- Volume:
- 66
- Issue:
- 5
- ISSN:
- 0022-3530
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Linear chains of seamounts, sourced from mantle plume processes, have the potential to refine plate motion models because the hotspot remains fixed relative to the moving lithospheric plate. However, to define plate motion, consistent seamount age progression and geometry are required. Some seamount chains, such as the Musician Seamount Province (MSP), have complex geometries and age distributions, which complicates calibrating plate motion. The MSP resides northwest of the Hawaiian Islands and is composed of seamounts and volcanic elongated ridges (VERs) that cover ∼420,000 km2 of Pacific seafloor. Here we provide new 40Ar/39Ar age determinations for a series of lava flows recovered from the MSP during expedition EX1708 of the National Oceanic and Atmospheric Administration's Ocean Exploration program. The MSP was built by four distinct volcanic processes: (1) age-progressive hotspot volcanism associated with the Euterpe Plume (ca. 98–79 Ma). (2) VER formation from plume-ridge channelization (ca. 97–94 Ma; 86–79 Ma) where the VERs only form when the hotspot is within ∼600 km of the ridge. (3) Eocene volcanism driven by extension during the ca. 50 Ma change in Pacific rotation poles (ca. 54–47 Ma). (4) Some near-ridge shear-driven upwelling or diffuse extensional volcanism that preceded the southern MSP lithosphere overriding the plume (ca. 86–84 Ma). By filtering lava flows with only robust statistically concordant 40Ar/39Ar age determinations as well as geologic setting, we develop a dataset of samples valuable for constraining Pacific plate motion. A local plate velocity of 42 ± 9 km/Ma for the 98–81 Ma time frame is calculated. Furthermore, the seamount track indicates that large shifts in Pacific rotation pole locations are required prior to 98 Ma and at ca. 81 Ma.more » « less
-
Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common.more » « less
-
It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (>1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3 He/ 4 He (up to 8.9R A ) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3 He/ 4 He >10.3R A (and potentially up to 26R A , similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1R A ). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3 He/ 4 He values in central Panama are likely derived from the infiltration of a Galápagos plume–like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a “mantle wind” toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.more » « less
-
As the Pacific Plate migrates over the mantle plume below Hawaiʻi, magma flux decreases, resulting in changes in eruptive volume, style, and composition. It is thought that melt storage becomes deeper and ephemeral with the transition from highly voluminous tholeiitic (shield stage) to the less voluminous alkaline (post-shield and rejuvenation stages) magmatism. To quantitatively test this, we applied high-precision fluid inclusion barometry via Raman spectroscopy to samples from representative volcanoes of different evolutionary stages. This suggests an evolution from shield-stage shallow magma storage (~1 to 2 kilometers) for Kīlauea to a post-shield stage that includes crustal magma storage within the volcanic edifice (~2 kilometers) and deeper storage below the Moho (~20 to 27 kilometers) for Haleakalā. The rejuvenation stage (Diamond Head) displays mantle-dominated storage (~22 to 30 kilometers). High melt fluxes likely form stable conduits from the mantle to a shallow reservoir in the shield volcanoes. As melt flux decreases, the Moho becomes the boundary controlling melt stagnation and evolution.more » « less
An official website of the United States government
