skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Biogenic hydrogen production from oil hydrocarbons at geological carbon storage conditions
We found that supercritical CO2 and the availability of protein-rich matter in depleted oil reservoirs can result in the biogenic production of H2 from oil hydrocarbons by indigenous microbial communities. Our experimental results support the hypothesis that a decrease in pH to acidic levels due to the dissolution of supercritical CO2 into the formation water and availability of protein-rich matter favors the activity of H2-producing microbial communities over the activity of H2-using microbial communities. To determine where, when, and how much H2 could be produced in a depleted oil reservoir injected with CO2 and produced water (PW) supplied with protein-rich matter, we simulated the biogenic production of H2 for the Morrow B sandstone reservoir. Simulations were conducted using CO2Bio, a program developed to simulate the multiphase bio-geochemical reactive transport of CO2-CH4-H2-H2S gases in geological carbon storage (GCS) sites. The microbiological capabilities of CO2Bio are validated against batch reaction experimental results. Our field-scale simulation results indicate that 154 – 1673 kg of H2 could be produced after 100 days of CO2 and PW co-injection into a single well of radial flow, and that sandstone reservoirs are more suitable than carbonate reservoirs to produce H2 from dissolved hydrocarbons. Based on the obtained experimental and simulation results, we propose a new H2 production method that couples GCS and PW disposal in depleted oil reservoirs to attenuate environmental and energy issues related to global warming derived from atmospheric pollution with CO2, risk of freshwater resources contamination with PW, and depletion of energy resources.  more » « less
Award ID(s):
2041648
PAR ID:
10567320
Author(s) / Creator(s):
;
Publisher / Repository:
ScienceDirect
Date Published:
Journal Name:
Energy Conversion and Management
Volume:
325
Issue:
C
ISSN:
0196-8904
Page Range / eLocation ID:
119438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In some areas in Wyoming, constructed wetlands (CWs) are used to polish PW downstream of National Pollutant Discharge Elimination System (NPDES) PW release points. In recent years, there has been increased interest in finding lower cost options, such as CWs, for PW treatment. The goal of this study was to understand the efficacy of removal and environmental fate of O&G organic chemical additives in CW systems used to treat PW released for agricultural beneficial reuse. To achieve this goal, we analyzed water and sediment samples for organic O&G chemical additives and conducted 16S rRNA gene sequencing for microbial community characterization on three such systems in Wyoming, USA. Three surfactants (polyethylene glycols, polypropylene glycols, and nonylphenol ethoxylates) and one biocide (alkyldimethylammonium chloride) were detected in all three PW discharges and >94% removal of all species from PW was achieved after treatment in two CWs in series. These O&G extraction additives were detected in all sediment samples collected downstream of PW discharges. Chemical and microbial analyses indicated that sorption and biodegradation were the main attenuation mechanisms for these species. Additionally, all three discharges showed a trend of increasingly diverse, but similar, microbial communities with greater distance from NPDES PW discharge points. Results of this study can be used to inform design and management of constructed wetlands for produced water treatment. 
    more » « less
  2. Abstract How subsurface microbial life changed at the bottom of the kilometers‐deep (hypo) Critical Zone in response to evolving surface conditions over geologic time is an open question. This study investigates the burial and exhumation, biodegradation, and fluid circulation history of hydrocarbon reservoirs across the Colorado Plateau as a window into the hypo‐Critical Zone. Hydrocarbon reservoirs, in the Paradox and Uinta basins, were deeply buried starting ca. 100 to 60 Ma, reaching temperatures >80–140°C, likely sterilizing microbial communities present since the deposition of sediments. High salinities associated with evaporites may have further limited microbial activity. Upward migration of hydrocarbons from shale source rocks into shallower reservoirs during maximum burial set the stage for microbial re‐introduction by creating organic‐rich “hot spots.” Denudation related to the incision of the Colorado River over the past few million years brought reservoirs closer to the surface under cooler temperatures, enhanced deep meteoric water circulation and flushing of saline fluids, and likely re‐inoculated more permeable sediments up to several km depth. Modern‐ to paleo‐hydrocarbon reservoirs show molecular and isotopic evidence of anaerobic oxidation of hydrocarbons coupled to bacterial sulfate reduction in areas with relatively high SO4‐fluxes. Anaerobic oil biodegradation rates are high enough to explain the removal of at least some portion of postulated “supergiant oil fields” across the Colorado Plateau by microbial activity over the past several million years. Results from this study help constrain the lower limits of the hypo‐Critical Zone and how it evolved over geologic time, in response to changing geologic, hydrologic, and biologic forcings. 
    more » « less
  3. Abstract To optimize CO2 EOR operations, such as Huff and Puff (HnP), it is necessary to have a good understanding of oil- CO2 transport both at nanopore and at reservoir scales. In this study, experiments were performed to investigate how pore adsorbed CO2 can mediate oil flow in analog nanopore arrays. These experiments quantified how much interfacial CO2 contributed to improving permeability to oil in nanopores, in addition to increasing mobility by viscosity reduction. The experimental procedure involved flowing C10 (decane) with and without CO2 through an Anodic Aluminum Oxide (AAO) membrane at a defined differential pressure and recording flow rate. Viscosity obtained from correlations was then used to calculate membrane pore permeability. Inlet pump pressure was lower than the oil-CO2 miscibility pressure at the test conditions. Pore permeability improvement due to pore wall adsorbed CO2 was computed by isolating the effect of viscosity reduction of the bulk fluid. An overall pore-permeability increase of 15% was observed in the CO2 and C10 mixture experiments compared to the C10-only experiments, due to interfacial CO2. These results lend support to the previous molecular dynamics simulations, which predicted that interfacial CO2 can significantly modulate C10 flow in nanopores up to 10 nm diameter (Moh et al. 2020). Some differences from the molecular dynamics simulations of Moh et al. (2020) observed in the experimental study also verify the potential contribution of other phenomena to the permeability enhancement of the nanoporous membrane in the presence of CO2. Therefore, this study provides further impetus for exploring the unique nanofluidic physics of oil and CO2 transport arising from CO2 at oil-wall interfaces. The demonstrated significance of the unique nanopore phenomena, which have not been observed and incorporated into large-scale flow models, emphasizes the importance of identifying and incorporating nanofluidic physics into commercial reservoir simulators' transport models for better representation of CO2 and oil flow in unconventional reservoirs. 
    more » « less
  4. null (Ed.)
    Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean’s microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage. 
    more » « less
  5. Lake sediment microbial communities mediate carbon diagenesis. However, microbial community composition is variable across lakes, and it is still uncertain how variation in community composition influences sediment responses to environmental change. Sediment methane (CH 4 ) production has been shown to be substantially elevated by increased lake primary productivity and organic matter supply. However, the magnitude of the response of CH 4 production varies across lakes, and recent studies suggest a role for the microbial community in mediating this response. Here, we conducted sediment incubation experiments across 22 lakes to determine whether variation in sediment microbial community composition is related to the response of sediment CH 4 production to increases in organic matter. We sampled the 22 lakes across a gradient of pH in order to investigate lakes with variable sediment microbial communities. We manipulated the incubations with additions of dried algal biomass and show that variation in the response of CH 4 production to changes in organic matter supply is significantly correlated with metrics of sediment microbial community composition. Specifically, the diversity and richness of the non-methanogen community was most predictive of sediment CH 4 responses to organic matter additions. Additionally, neither metrics of microbial abundance nor preexisting organic matter availability explained meaningful variation in the response. Thus, our results provide experimental support that differences in sediment microbial communities influences CH 4 production responses to changes in organic matter availability. 
    more » « less