Recent advances in instruments are transforming our capabilities to better understand, monitor, and model river systems. The present paper illustrates such capabilities by providing new insights into unsteady flows captured with a Horizontal Acoustic Current Profiler (HADCP) integrated at an operational index-velocity gaging station. The illustrations demonstrate that the high-resolution stage and velocity measurements directly acquired during flood wave propagation reveal the intricate interplay among flow variables that are essential for better supporting judicious decision making for river management, flooding, sediment transport, and stream ecology. The paper confirms that the index-velocity method better captures the unsteady flow dynamics in comparison with the stage-discharge monitoring approach. At a time when the intensity and frequency of floods is continuously increasing, a better understanding of the critical features of flood waves during extreme events and the possibility of capturing more accurately their dynamics in real time is of special socio-economic significance.
more »
« less
Decoding the Hysteretic Behaviour of Hydraulic Variables in Lowland Rivers Using Multivariate Monitoring Approaches
ABSTRACT This paper demonstrates that the multivariate monitoring methods are capable to underpin the systematic investigation of the hysteretic behaviour occurring during gradually‐varied flows. For this purpose, we present simultaneous measurements of stage, index velocity and free‐surface slope acquired continuously with high‐frequency sampling instruments deployed at several river gaging sites exposed to different storm magnitudes. The experimental evidence reveals intrinsic features of unsteady open‐channel flow mechanics that are hinted by pertinent governing equations but rarely substantiated with in situ measurements. The illustrations are intentionally made for fluvial waves propagating in lowland rivers where the relationships among flow variables are most likely displaying hysteretic phasing in the progression of the hydraulic variables and loops in their relationships. The presented measurements highlight that: (a) the hysteretic behaviour is apparent in both time‐independent and time‐dependent graphical representations of any two of the hydraulic variables; (b) the severity of the hysteresis is commensurate with the geomorphic, hydraulic and hydrological characteristics of the measurement site; and (c) there are flow monitoring paradigms that can more accurately track changes of the flow variables during gradually‐varied flows than those currently used in practice. Also discussed are research needs for advancing the understanding of the mechanisms underlying the movement and storage of water in the lowland river environments as well as for increasing the accuracy of streamflow monitoring, modelling and forecasting.
more »
« less
- Award ID(s):
- 2139649
- PAR ID:
- 10567372
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Hydrological Processes
- Volume:
- 39
- Issue:
- 1
- ISSN:
- 0885-6087
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Floodplains along low‐gradient, meandering river systems contain diverse hydrogeomorphic features, ranging from isolated depressions to hydrologically‐connected channels. These ephemerally‐flooded features inundate prior to river water overtopping all banks, enhancing river‐floodplain connectivity during moderately high flow stages. Predicting when and where ecological functions occur in floodplains requires understanding the dynamic hydrologic processes of hydrogeomorphic features, including inundation and exchange. In this study, we examined storm event‐scale inundation and exchange dynamics along a lowland, meandering river system in central Illinois (USA). We monitored surface water presence/absence, surface water level, and groundwater level across floodplain hydrogeomorphic feature types (i.e., isolated depression, backwater channel, and flow‐through channel). Using these data, we evaluated inundation onset and recession characteristics, drivers of groundwater‐surface water interactions, and direction of hydrologic exchange with the river channel. Surface water presence/absence patterns suggested inundation onset timescales were primarily controlled by microtopography and recession timescales were correlated with floodplain elevation. Employing a novel hysteresis approach for characterising groundwater‐surface water interactions, we observed distinct patterns indicating differences in water sources across hydrogeomorphic units and event characteristics. Finally, differences in hydraulic head along floodplain channels revealed that channels with multiple inlets/outlets (i.e., flow‐through channels) conveyed down‐valley flow and channels with single inlets primarily functioned as sinks of river‐derived water to the floodplain with short source periods. These results highlight the heterogeneity of hydrologic processes that occur along lowland, meandering river‐floodplains, and more specifically, point to the important role hydrogeomorphic features play in controlling dynamic connectivity within the river corridor.more » « less
-
Abstract Intermittent streams currently constitute >50% of the global river network, and the number of intermittent streams is expected to increase due to changes in land use and climate. Surface flows are known to expand and contract within the headwater channel network due to changes in the water table driven by climate, often changing seasonally. However, the underlying causes of disconnections and reconnections throughout the stream network remain poorly understood and may reflect subsurface flow capacity. We assess how 3D subsurface flowpaths control local surface flows at Gibson Jack Creek in the Rocky Mountains, Idaho, USA. Water table dynamics, hydraulic gradients, and hyporheic exchange were monitored along a 200‐m section of the stream throughout the seasonal recession in WY2018. Shallow lateral hillslope‐riparian‐stream connectivity was more frequent in transects spanning perennially flowing stream reaches than intermittent reaches. During low‐flow periods, larger losing vertical hydraulic gradients were observed in paired piezometers in intermittent reaches than in adjacent perennial reaches. Contrary to dominant conceptual models, longitudinal measurements of hydrologic exchange in both intermittent and perennial reaches were seasonally variable except for one perennial reach that showed consistent significant gains. Observed drying dynamics, as well as subsurface pathways, were highly variable even over short distances (30 m). Flow probability and subsurface flow capacity at upstream locations can be assessed with an outlet hydrograph and upstream flow measurements. Accurate characterization of subsurface storage, discharge, and connection is critical to understanding the drivers of drying cycles in intermittent streams and their likely responses to future change.more » « less
-
Abstract There is growing evidence that the composition of river microbial communities gradually transitions from terrestrial taxa in headwaters to unique planktonic and biofilm taxa downstream. Yet, little is known about fundamental controls on this community transition across scales in river networks. We hypothesized that community composition is controlled by flow‐weighted travel time of water, in combination with temperature and dissolved organic matter (DOM), via similar mechanisms postulated in the Pulse‐Shunt Concept for DOM. Bacterioplankton and biofilm samples were collected at least quarterly for 2 yr at 30 sites throughout the Connecticut River watershed. Among hydrologic variables, travel time was a better predictor of both bacterioplankton and biofilm community structure than watershed area, dendritic distance, or discharge. Among all variables, both bacterioplankton and biofilm composition correlated with travel time, temperature, and DOM composition. Bacterioplankton beta‐diversity was highest at shorter travel times (< 1 d) and decreased with increasing travel time, showing progressive homogenization as water flows downstream. Bacterioplankton and biofilm communities were similar at short travel times, but diverged as travel time increased. Bacterioplankton composition at downstream sites more closely resembled headwater communities when temperatures were cooler and travel times shorter. These findings suggest that the pace and trajectory of riverine bacterioplankton community succession may be controlled by temperature‐regulated growth rate and time for communities to grow and change. Moreover, bacterioplankton, and to a lesser extent biofilm, may experience the same hydrologic forcing hypothesized in the Pulse‐Shunt Concept for DOM, suggesting that hydrology controls the dispersal of microbial communities in river networks.more » « less
-
Abstract Coastal river deltas are centers of surface water nitrate processing, yet the mechanisms controlling spatio‐temporal patterns in nutrient variability are still little understood. Nitrate fluctuations in these systems are controlled by complex interactions between hydrological and biogeochemical drivers, which act together to transport and transform inorganic nutrients. Distinguishing the contributions of these drivers and identifying wetland zones where nitrate processing is occurring can be difficult, yet is critical to make assessments of nutrient removal capacity in deltaic wetlands. To address these issues, we analyze relationships among regional “external” (river discharge, tides, wind) and local “internal” (water level, temperature, turbidity, and nitrate) variables in a deltaic wetland in coastal Louisiana by coupling a process connectivity framework with information theory measures. We classify variable interactions according to whether they work uniquely, redundantly, or synergistically to influence nitrate dynamics and identify timescales of interaction. We find that external drivers work together to influence nitrate transport. Patterns of hydrological and sediment connectivity change over time due to tidal flushing and discharge variation. This connectivity influences the emergence of functional zones where local nitrate fluctuations and temperature and water level process couplings are strong controls on nitrate variability. High vegetation density decreases hydrological process connectivity, even during periods of high river discharge, but it also increases biogeochemical process connections, due to the lengthening of the hydraulic residence time. Based on these results we make recommendations for monitoring nitrate in a wetland.more » « less
An official website of the United States government
