Abstract. Tropospheric ozone results from in situ chemical formation and stratosphere–troposphere exchange (STE), with the latter being more important in the middle and upper troposphere than in the lower troposphere. Ozone photochemical formation is nonlinear and results from the oxidation of methane and non-methane hydrocarbons (NMHCs) in the presence of nitrogen oxide (NOx=NO+NO2). Previous studies showed that O3 short- and long-term trends are nonlinearly controlled by near-surface anthropogenic emissions of carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxides, which may also be impacted by the long-range transport (LRT) of O3 and its precursors. In addition, several studies have demonstrated the important role of STE in enhancing ozone levels, especially in the midlatitudes. In this article, we investigate tropospheric ozone spatial variability and trends from 2005 to 2019 and relate those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone (TrC-O3) and its precursors, nitrogen dioxide (TrC-NO2), formaldehyde (TrC-HCHO), and total column CO (TC-CO), as well as ozonesonde data and model simulations. Our results indicate a complex relationship between tropospheric ozone column levels, surface ozone levels, and ozone precursors. While the increasing trends of near-surface ozone concentrations can largely be explained by variations in VOC and NOx concentration under different regimes, TrC-O3 may also be affected by other variables such as tropopause height and STE as well as LRT. Decreasing or increasing trends in TrC-NO2 have varying effects on TrC-O3, which is related to the different local chemistry in each region. We also shed light on the contribution of NOx lightning and soil NO and nitrous acid (HONO) emissions to trends of tropospheric ozone on regional and global scales.
more »
« less
This content will become publicly available on January 1, 2026
Tropical upper-tropospheric trends in ozone and carbon monoxide (2005–2020): observational and model results
Abstract. We analyze tropical ozone (O3) and carbon monoxide (CO) distributions in the upper troposphere (UT) for 2005–2020 using Aura Microwave Limb Sounder (MLS) observations and simulations from the Whole Atmosphere Community Climate Model (WACCM) and two variants of the Community Atmosphere Model with Chemistry (CAM-chem), with each variant using different anthropogenic CO emissions. Trends and variability diagnostics are obtained from multiple linear regression. The MLS zonal mean O3 UT trend for 20° S–20° N is +0.39 ± 0.28 % yr−1; the WACCM and CAM-chem simulations yield similar trends, although the WACCM result is somewhat smaller. Our analyses of gridded MLS data yield positive O3 trends (up to 1.4 % yr−1) over Indonesia and east of that region, as well as over Africa and the Atlantic. These positive mapped O3 trends are generally captured by the simulations but in a more muted way. We find broad similarities (and some differences) between mapped MLS UT O3 trends and corresponding mapped trends of tropospheric column ozone. The MLS zonal mean CO UT trend for 20° S–20° N is −0.25 ± 0.30 % yr−1, while the corresponding CAM-chem trend is 0.0 ± 0.14 % yr−1 when anthropogenic emissions are taken from the Community Emissions Data System (CEDS) version 2. The CAM-chem simulation driven by CAMS-GLOB-ANTv5 emissions yields a tropical mean CO UT trend of 0.22 ± 0.19 % yr−1, in contrast to the slightly negative MLS CO trend. Previously published analyses of total column CO data have shown negative trends. Our tropical composition trend results contribute to continuing international assessments of tropospheric evolution.
more »
« less
- Award ID(s):
- 2128446
- PAR ID:
- 10567528
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 597 to 624
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Tropospheric ozone is a major air pollutant and greenhouse gas. It is also the primary precursor of OH, the main tropospheric oxidant. Global atmospheric chemistry models show large differences in their simulations of tropospheric ozone budgets. Here we implement the widely used GEOS-Chem atmospheric chemistry module as an alternative to CAM-chem within the Community Earth System Model version 2 (CESM2). We compare the resulting GEOS-Chem and CAM-chem simulations of tropospheric ozone and related species within CESM2 to observations from ozonesondes, surface sites, the ATom-1 aircraft campaign over the Pacific and Atlantic, and the KORUS-AQ aircraft campaign over the Seoul Metropolitan Area. We find that GEOS-Chem and CAM-chem within CESM2 have similar tropospheric ozone budgets and concentrations usually within 5 ppb but important differences in the underlying processes including (1) photolysis scheme (no aerosol effects in CAM-chem), (2) aerosol nitrate photolysis, (3) N2O5 cloud uptake, (4) tropospheric halogen chemistry, and (5) ozone deposition to the oceans. Global tropospheric OH concentrations are the same in both models, but there are large regional differences reflecting the above processes. Carbon monoxide is lower in CAM-chem (and lower than observations), at least in part because of higher OH concentrations in the Northern Hemisphere and insufficient production from isoprene oxidation in the Southern Hemisphere. CESM2 does not scavenge water-soluble gases in convective updrafts, leading to some upper-tropospheric biases. Comparison to KORUS-AQ observations shows an overestimate of ozone above 4 km altitude in both models, which at least in GEOS-Chem is due to inadequate scavenging of particulate nitrate in convective updrafts in CESM2, leading to excessive NO production from nitrate photolysis. The KORUS-AQ comparison also suggests insufficient boundary layer mixing in CESM2. This implementation and evaluation of GEOS-Chem in CESM2 contribute to the MUSICA vision of modularizing tropospheric chemistry in Earth system models.more » « less
-
Abstract. Tropical tropospheric ozone (TTO) is important for the global radiation budget because the longwave radiative effect of tropospheric ozone is higher in the tropics than midlatitudes. In recent decades the TTO burden has increased, partly due to the ongoing shift of ozone precursor emissions from midlatitude regions toward the Equator. In this study, we assess the distribution and trends of TTO using ozone profiles measured by high-quality in situ instruments from the IAGOS (In-Service Aircraft for a Global Observing System) commercial aircraft, the SHADOZ (Southern Hemisphere ADditional OZonesondes) network, and the ATom (Atmospheric Tomographic Mission) aircraft campaign, as well as six satellite records reporting tropical tropospheric column ozone (TTCO): TROPOspheric Monitoring Instrument (TROPOMI), Ozone Monitoring Instrument (OMI), OMI/Microwave Limb Sounder (MLS), Ozone Mapping Profiler Suite (OMPS)/Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI)/Global Ozone Monitoring Experiment 2 (GOME2). With greater availability of ozone profiles across the tropics we can now demonstrate that tropical India is among the most polluted regions (e.g., western Africa, tropical South Atlantic, Southeast Asia, Malaysia and Indonesia), with present-day 95th percentile ozone values reaching 80 nmol mol−1 in the lower free troposphere, comparable to midlatitude regions such as northeastern China and Korea. In situ observations show that TTO increased between 1994 and 2019, with the largest mid- and upper-tropospheric increases above India, Southeast Asia, and Malaysia and Indonesia (from 3.4 ± 0.8 to 6.8 ± 1.8 nmol mol−1 decade−1), reaching 11 ± 2.4 and 8 ± 0.8 nmol mol−1 decade−1 close to the surface (India and Malaysia–Indonesia, respectively). The longest continuous satellite records only span 2004–2019 but also show increasing ozone across the tropics when their full sampling is considered, with maximum trends over Southeast Asia of 2.31 ± 1.34 nmol mol−1 decade−1 (OMI) and 1.69 ± 0.89 nmol mol−1 decade−1 (OMI/MLS). In general, the sparsely sampled aircraft and ozonesonde records do not detect the 2004–2019 ozone increase, which could be due to the genuine trends on this timescale being masked by the additional uncertainty resulting from sparse sampling. The fact that the sign of the trends detected with satellite records changes above three IAGOS regions, when their sampling frequency is limited to that of the in situ observations, demonstrates the limitations of sparse in situ sampling strategies. This study exposes the need to maintain and develop high-frequency continuous observations (in situ and remote sensing) above the tropical Pacific Ocean, the Indian Ocean, western Africa, and South Asia in order to estimate accurate and precise ozone trends for these regions. In contrast, Southeast Asia and Malaysia–Indonesia are regions with such strong increases in ozone that the current in situ sampling frequency is adequate to detect the trends on a relatively short 15-year timescale.more » « less
-
Abstract. We investigated the ozone pollution trend and its sensitivity to keyprecursors from 1990 to 2015 in the United States using long-term EPA Air Quality System (AQS)observations and mesoscale simulations. The modeling system, a coupledregional climate–air quality model (CWRF-CMAQ; Climate-Weather Research Forecast andthe Community Multiscale Air Quality), captured well the summersurface ozone pollution during the past decades, having a mean slope oflinear regression with AQS observations of ∼0.75. While theAQS network has limited spatial coverage and measures only a few keychemical species, CWRF-CMAQ provides comprehensive simulations to enablea more rigorous study of the change in ozone pollution and chemicalsensitivity. Analysis of seasonal variations and diurnal cycle of ozoneobservations showed that peak ozone concentrations in the summer afternoondecreased ubiquitously across the United States, up to 0.5 ppbv yr−1 in majornon-attainment areas such as Los Angeles, while concentrations at certainhours such as the early morning and late afternoon increased slightly.Consistent with the AQS observations, CMAQ simulated a similar decreasingtrend of peak ozone concentrations in the afternoon, up to 0.4 ppbv yr−1, andincreasing ozone trends in the early morning and late afternoon. A monotonicallydecreasing trend (up to 0.5 ppbv yr−1) in the odd oxygen (Ox=O3+NO2) concentrations are simulated by CMAQ at all daytime hours.This result suggests that the increased ozone in the early morning and lateafternoon was likely caused by reduced NO–O3 titration, driven bycontinuous anthropogenic NOx emission reductions in the past decades.Furthermore, the CMAQ simulations revealed a shift in chemical regimes ofozone photochemical production. From 1990 to 2015, surface ozone productionin some metropolitan areas, such as Baltimore, has transited from aVOC-sensitive environment (>50 % probability) to aNOx-sensitive regime. Our results demonstrated that the long-termCWRF-CMAQ simulations can provide detailed information of the ozonechemistry evolution under a changing climate and may partially explain theUS ozone pollution responses to regional and national regulations.more » « less
-
Abstract. We implement the GEOS-Chem chemistry module as a chemical mechanism in version 2 of the Community Earth System Model (CESM). Our implementation allowsthe state-of-the-science GEOS-Chem chemistry module to be used with identical emissions, meteorology, and climate feedbacks as the CAM-chemchemistry module within CESM. We use coupling interfaces to allow GEOS-Chem to operate almost unchanged within CESM. Aerosols are converted at eachtime step between the GEOS-Chem bulk representation and the size-resolved representation of CESM's Modal Aerosol Model (MAM4). Land-type informationneeded for dry-deposition calculations in GEOS-Chem is communicated through a coupler, allowing online land–atmosphere interactions. Wet scavengingin GEOS-Chem is replaced with the Neu and Prather scheme, and a common emissions approach is developed for both CAM-chem and GEOS-Chem in CESM. We compare how GEOS-Chem embedded in CESM (C-GC) compares to the existing CAM-chem chemistry option (C-CC) when used to simulate atmosphericchemistry in 2016, with identical meteorology and emissions. We compare the atmospheric composition and deposition tendencies between the twosimulations and evaluate the residual differences between C-GC and its use as a stand-alone chemistry transport model in the GEOS-Chem HighPerformance configuration (S-GC). We find that stratospheric ozone agrees well between the three models, with differences of less than 10 % inthe core of the ozone layer, but that ozone in the troposphere is generally lower in C-GC than in either C-CC or S-GC. This is likely due to greatertropospheric concentrations of bromine, although other factors such as water vapor may contribute to lesser or greater extents depending on theregion. This difference in tropospheric ozone is not uniform, with tropospheric ozone in C-GC being 30 % lower in the Southern Hemisphere whencompared with S-GC but within 10 % in the Northern Hemisphere. This suggests differences in the effects of anthropogenic emissions. Aerosolconcentrations in C-GC agree with those in S-GC at low altitudes in the tropics but are over 100 % greater in the upper troposphere due todifferences in the representation of convective scavenging. We also find that water vapor concentrations vary substantially between the stand-aloneand CESM-implemented version of GEOS-Chem, as the simulated hydrological cycle in CESM diverges from that represented in the source NASA Modern-Era Retrospective analysis for Research and Applications (Version 2; MERRA-2)reanalysis meteorology which is used directly in the GEOS-Chem chemistrytransport model (CTM). Our implementation of GEOS-Chem as a chemistry option in CESM (including full chemistry–climate feedback) is publicly available and is beingconsidered for inclusion in the CESM main code repository. This work is a significant step in the MUlti-Scale Infrastructure for Chemistry andAerosols (MUSICA) project, enabling two communities of atmospheric researchers (CESM and GEOS-Chem) to share expertise through a common modelingframework, thereby accelerating progress in atmospheric science.more » « less
An official website of the United States government
