skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermoelastic Anomaly of Iron Carbonitride Across the Spin Transition and Implications for Planetary Cores
Abstract Carbon and nitrogen are considered as candidate light elements present in planetary cores. However, there is limited understanding regarding the structure and physical properties of Fe‐C‐N alloys under extreme conditions. Here diamond anvil cell experiments were conducted, revealing the stability of hexagonal‐structured Fe7(N0.75C0.25)3up to 120 GPa and 2100 K, without undergoing any structural transformation or dissociation. Notably, the thermal expansion coefficient and Grüneisen parameter of the alloy exhibit a collapse at 55–70 GPa. First‐principles calculations suggest that such anomaly is associated with the spin transition of iron within Fe7(N0.75C0.25)3. Our modeling indicates that the presence of ∼1.0 wt% carbon and nitrogen in liquid iron contributes to 9–12% of the density deficit of the Earth's outer core. The thermoelastic anomaly of the Fe‐C‐N alloy across the spin transition is likely to affect the density and seismic velocity profiles of (C,N)‐rich planetary cores, thereby influencing the dynamics of such cores.  more » « less
Award ID(s):
1829273 2127807
PAR ID:
10567532
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
16
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nitrogen has been proposed to be stored within planetary cores, but its effects on the structure and density of molten Fe–alloys have not been explored experimentally. Using energy‐dispersive X‐ray diffraction, we determined the structure of Fe–N(–C) liquids at core conditions (1–7 GPa and 1700–1900°C) within a Paris‐Edinburgh press. Variation of N up to 7 wt.% and C up to 1.5 wt.% results in near‐linear changes in Fe–Fe atom distances and structure factor with increasing light element content. We did not observe a significant pressure‐driven structural transition in Fe–N(–C) liquids. We model the expansion of the Fe–Fe bonds using a modified Birch‐Murnaghan equation of state. With this model, we demonstrate that N or C contamination could lead to an overestimation of the Fe–Fe distances of pure Fe. We observe that the incorporation of 1 wt.% N or C into Fe results in a change in Fe–Fe distances that is twice as significant as the effect of 1 GPa. By approximating the change in volume, we infer that N and C incorporated in liquid iron could contribute to the density deficit observed in the cores of terrestrial bodies. 
    more » « less
  2. Light element alloying in iron is required to explain density deficit and seismic wave velocities in Earth’s core. However, the light element composition of the Earth’s core seems hard to constrain as nearly all light element alloying would reduce the density and sound velocity (elastic moduli). The alloying light elements include oxidizing elements like oxygen and sulfur and reducing elements like hydrogen and carbon, yet their chemical effects in the alloy system are less discussed. Moreover, Fe-X-ray Absorption Near Edge Structure (Fe-XANES) fingerprints have been studied for silicate materials with ferrous and ferric ions, while not many X-ray absorption spectroscopy (XAS) studies have focused on iron alloys, especially at high pressures. To investigate the bonding nature of iron alloys in planetary interiors, we presented X-ray absorption spectroscopy of iron–nitrogen and iron–carbon alloys at high pressures up to 50 GPa. Together with existing literature on iron–carbon, –hydrogen alloys, we analyzed their edge positions and found no significant difference in the degree of oxidation among these alloys. Pressure effects on edge positions were also found negligible. Our theoretical simulation of the valence state of iron, alloyed with S, C, O, N, and P also showed nearly unchanged behavior under pressures up to 300 GPa. This finding indicates that the high pressure bonding of iron alloyed with light elements closely resembles bonding at the ambient conditions. We suggest that the chemical properties of light elements constrain which ones can coexist within iron alloys. 
    more » « less
  3. Abstract Iron‐nitrogen‐carbon (Fe‐N‐C) single‐atom catalysts are promising sustainable alternatives to the costly and scarce platinum (Pt) to catalyze the oxygen reduction reactions (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). However, Fe‐N‐C cathodes for PEMFC are made thicker than Pt/C ones, in order to compensate for the lower intrinsic ORR activity and site density of Fe‐N‐C materials. The thick electrodes are bound with mass transport issues that limit their performance at high current densities, especially in H2/air PEMFCs. Practical Fe‐N‐C electrodes must combine high intrinsic ORR activity, high site density, and fast mass transport. Herein, it has achieved an improved combination of these properties with a Fe‐N‐C catalyst prepared via a two‐step synthesis approach, constructing first a porous zinc‐nitrogen‐carbon (Zn‐N‐C) substrate, followed by transmetallating Zn by Fe via chemical vapor deposition. A cathode comprising this Fe‐N‐C catalyst has exhibited a maximum power density of 0.53 W cm−2in H2/air PEMFC at 80 °C. The improved power density is associated with the hierarchical porosity of the Zn‐N‐C substrate of this work, which is achieved by epitaxial growth of ZIF‐8 onto g‐C3N4, leading to a micro‐mesoporous substrate. 
    more » « less
  4. Abstract Accurate knowledge of the phase transitions and thermoelastic properties of candidate iron alloys, such as Fe‐Si alloys, is essential for understanding the nature and dynamics of planetary cores. The phase diagrams of some Fe‐Si alloys between 1 atm and 16 GPa have been back‐extrapolated from higher pressures, but the resulting phase diagram of Fe83.6Si16.4(9 wt.% Si) is inconsistent with temperature‐induced changes in its electrical resistivity between 6 and 8 GPa. This study reports in situ synchrotron X‐ray diffraction (XRD) measurements on pre‐melted and powder Fe83.6Si16.4samples from ambient conditions to 60 GPa and 900 K using an externally heated diamond‐anvil cell. Upon compression at 300 K, thebccphase persisted up to ∼38 GPa. Thehcpphase appeared near 8 GPa in the pre‐melted sample, and near 17 GPa in the powder sample. The appearance of thehcpphase in the pre‐melted sample reconciles the reported changes in electrical resistivity of a similar sample, thus resolving the low‐pressure region of the phase diagram. The resulting high‐temperature Birch‐Murnaghan equation of state (EoS) and thermal EoS based on the Mie‐Gruneisen‐Debye model of thebccandhcpstructures are consistent with, and complement the literature data at higher pressures. The calculated densities based on the thermal EoS of Fe‐9wt.%Si indicate that bothbccandhcpphases agree with the reported core density estimates for the Moon and Mercury. 
    more » « less
  5. null (Ed.)
    Natural kamacite samples (Fe92.5Ni7.5) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the c/a ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal c/a ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. 
    more » « less