skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sub-ice sediment cosmogenic data Camp Century, Northwest Greenland, 1966 & 2022-2025
This data file contains the cosmogenic beryllium-10 (10Be), aluminum-26 (26Al), and chlorine-36 (36Cl) data from the frozen sediments underneath the Camp Century ice, produced at the Cosmogenic Nuclide Laboratory of the Lamont-Doherty Earth Observatory within National Science Foundation (NSF) Award 2114634 ('Collaborative Research: A fossil ecosystem under the ice: deciphering the glacialand vegetation history of northwest Greenland using long-lost Camp Century basal sediment'). These data help understanding the complexity of the 3 meters (m) of frozen sediment underneath the Camp Century ice core, and adds constraints to the question of past stability of this sector of the Greenland Ice Sheet. We have processed relatively small sub-samples we received from the University of Vermont team (lead PI Paul Bierman), by separating and de-contaminating quartz and feldspar, and measuring the cosmogenic isotopes listed above down the frozen sediment column. These important and complex data are currently prepared for publication under the lead of Lamont postdoc Joanna Charton.  more » « less
Award ID(s):
2114634
PAR ID:
10567653
Author(s) / Creator(s):
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
cosmogenic nuclides Camp Century frozen sediments sub-ice archive
Format(s):
Medium: X Other: text/xml
Location:
Greenland
Institution:
Lamont-Doherty Earth Observatory of Columbia University
Sponsoring Org:
National Science Foundation
More Like this
  1. Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet. 
    more » « less
  2. Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance.26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma. 
    more » « less
  3. Abstract. In 1966, drilling at Camp Century, Greenland, recovered 3.44 meters of sub-glacial material from beneath 1350 meters of ice. Although prior analysis of this material showed that the core includes glacial sediment, ice, and sediment deposited during an interglacial, the sub-glacial material had never been thoroughly studied. To better characterize this material, we analyzed 26 of the 30 core samples remaining in the archive. We performed a multi-scale analysis including X-ray diffraction, micro-computed tomography, and scanning electron microscopy to delineate stratigraphic units and assign facies based on inferred depositional processes. At the macro-scale, quantitative X-ray diffraction revealed that quartz and feldspar dominated the sediment and that there was insignificant variation in relative mineral abundance between samples. Meso-scale evaluation of the frozen material using micro-computed tomography scans showed clear variations in the stratigraphy of the core characterized by the presence of bedding, grading, and sorting. Micro-scale grain size and shape analysis, conducted using scanning electron microscopy, showed an abundance of fine-grained materials in the lower part of the core and no correspondence between grain shape parameters and sedimentary structures. These multiscale data define 5 distinct stratigraphic units within the core based on sedimentary process; K-means clustering analysis supports this proposed unit delineation. Our observations suggest that ice retreat uncovered the Camp Century region exposing basal till, covered with a remnant of basal ice or firn (Units 1 and 2). Continued ice-free conditions led to till disruption by liquid water causing a slump deposit (Unit 3) and the development of a small fluvial system of increasing energy up core (Units 4–5). Analysis of the Camp Century sub-glacial material indicates a diverse stratigraphy preserved below the ice that recorded episodes of glaciated and deglaciated conditions in northwestern Greenland. Our physical, geochemical, and mineralogic analyses reveal a history of deposition, weathering, and sediment transport preserved under the ice and show the promise of sub-glacial materials to increase our knowledge of past ice sheet behavior over time. 
    more » « less
  4. The Camp Century ice core, collected in 1966 from northwestern Greenland, recovered 3.44 meters of sub-glacial sediment from below nearly 1400 meters of ice. After drilling, the sediment was cursorily investigated and then misplaced for decades. This data set provides water isotope data from pore waters in the sediment, which reflects climate conditions when that sediment was exposed at the surface, about 400,000 years ago. 
    more » « less
  5. Abstract. Direct observations of the size of the Greenland Ice Sheet during Quaternary interglaciations are sparse yet valuable for testing numerical models of ice-sheet history and sea level contribution. Recent measurements of cosmogenicnuclides in bedrock from beneath the Greenland Ice Sheet collected duringpast deep-drilling campaigns reveal that the ice sheet was significantlysmaller, and perhaps largely absent, sometime during the past 1.1 millionyears. These discoveries from decades-old basal samples motivate new,targeted sampling for cosmogenic-nuclide analysis beneath the ice sheet.Current drills available for retrieving bed material from the US IceDrilling Program require < 700 m ice thickness and a frozen bed,while quartz-bearing bedrock lithologies are required for measuring a largesuite of cosmogenic nuclides. We find that these and other requirementsyield only ∼ 3.4 % of the Greenland Ice Sheet bed as asuitable drilling target using presently available technology. Additionalfactors related to scientific questions of interest are the following: which areas of thepresent ice sheet are the most sensitive to warming, where would a retreating icesheet expose bare ground rather than leave a remnant ice cap, andwhich areas are most likely to remain frozen bedded throughout glacialcycles and thus best preserve cosmogenic nuclides? Here we identifylocations beneath the Greenland Ice Sheet that are best suited for potentialfuture drilling and analysis. These include sites bordering Inglefield Landin northwestern Greenland, near Victoria Fjord and Mylius-Erichsen Land innorthern Greenland, and inland from the alpine topography along the icemargin in eastern and northeastern Greenland. Results from cosmogenic-nuclide analysis in new sub-ice bedrock cores from these areas would help to constrain dimensions of the Greenland Ice Sheet in the past. 
    more » « less