Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.
more »
« less
A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century
Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance.26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.
more »
« less
- PAR ID:
- 10217490
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 13
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2021442118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The persistence and size of the Greenland Ice Sheet (GrIS) through the Pleistocene is uncertain. This is important because reconstructing changes in the GrIS determines its contribution to sea level rise during prior warm climate periods and informs future projections. To understand better the history of Greenland’s ice, we analyzed glacial till collected in 1993 from below 3 km of ice at Summit, Greenland. The till contains plant fragments, wood, insect parts, fungi, and cosmogenic nuclides showing that the bed of the GrIS at Summit is a long-lived, stable land surface preserving a record of deposition, exposure, and interglacial ecosystems. Knowing that central Greenland was tundra-covered during the Pleistocene informs the understanding of Arctic biosphere response to deglaciation.more » « less
-
This data file contains the cosmogenic beryllium-10 (10Be), aluminum-26 (26Al), and chlorine-36 (36Cl) data from the frozen sediments underneath the Camp Century ice, produced at the Cosmogenic Nuclide Laboratory of the Lamont-Doherty Earth Observatory within National Science Foundation (NSF) Award 2114634 ('Collaborative Research: A fossil ecosystem under the ice: deciphering the glacialand vegetation history of northwest Greenland using long-lost Camp Century basal sediment'). These data help understanding the complexity of the 3 meters (m) of frozen sediment underneath the Camp Century ice core, and adds constraints to the question of past stability of this sector of the Greenland Ice Sheet. We have processed relatively small sub-samples we received from the University of Vermont team (lead PI Paul Bierman), by separating and de-contaminating quartz and feldspar, and measuring the cosmogenic isotopes listed above down the frozen sediment column. These important and complex data are currently prepared for publication under the lead of Lamont postdoc Joanna Charton.more » « less
-
Abstract. In 1966, drilling at Camp Century, Greenland, recovered 3.44 meters of sub-glacial material from beneath 1350 meters of ice. Although prior analysis of this material showed that the core includes glacial sediment, ice, and sediment deposited during an interglacial, the sub-glacial material had never been thoroughly studied. To better characterize this material, we analyzed 26 of the 30 core samples remaining in the archive. We performed a multi-scale analysis including X-ray diffraction, micro-computed tomography, and scanning electron microscopy to delineate stratigraphic units and assign facies based on inferred depositional processes. At the macro-scale, quantitative X-ray diffraction revealed that quartz and feldspar dominated the sediment and that there was insignificant variation in relative mineral abundance between samples. Meso-scale evaluation of the frozen material using micro-computed tomography scans showed clear variations in the stratigraphy of the core characterized by the presence of bedding, grading, and sorting. Micro-scale grain size and shape analysis, conducted using scanning electron microscopy, showed an abundance of fine-grained materials in the lower part of the core and no correspondence between grain shape parameters and sedimentary structures. These multiscale data define 5 distinct stratigraphic units within the core based on sedimentary process; K-means clustering analysis supports this proposed unit delineation. Our observations suggest that ice retreat uncovered the Camp Century region exposing basal till, covered with a remnant of basal ice or firn (Units 1 and 2). Continued ice-free conditions led to till disruption by liquid water causing a slump deposit (Unit 3) and the development of a small fluvial system of increasing energy up core (Units 4–5). Analysis of the Camp Century sub-glacial material indicates a diverse stratigraphy preserved below the ice that recorded episodes of glaciated and deglaciated conditions in northwestern Greenland. Our physical, geochemical, and mineralogic analyses reveal a history of deposition, weathering, and sediment transport preserved under the ice and show the promise of sub-glacial materials to increase our knowledge of past ice sheet behavior over time.more » « less
-
Abstract We present new data from the debris-rich basal ice layers of the NEEM ice core (NW Greenland). Using mineralogical observations, SEM imagery, geochemical data from silicates (meteoric10Be, εNd,87Sr/86Sr) and organic material (C/N, δ13C), we characterize the source material, succession of previous glaciations and deglaciations and the paleoecological conditions during ice-free episodes. Meteoric10Be data and grain features indicate that the ice sheet interacted with paleosols and eroded fresh bedrock, leading to mixing in these debris-rich ice layers. Our analysis also identifies four successive stages in NW Greenland: (1) initial preglacial conditions, (2) glacial advance 1, (3) glacial retreat and interglacial conditions and (4) glacial advance 2 (current ice-sheet development). C/N and δ13C data suggest that deglacial environments favored the development of tundra and taiga ecosystems. These two successive glacial fluctuations observed at NEEM are consistent with those identified from the Camp Century core basal sediments over the last 3 Ma. Further inland, GRIP and GISP2 summit sites have remained glaciated more continuously than the western margin, with less intense ice-substratum interactions than those observed at NEEM.more » « less
An official website of the United States government
