Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.
more »
« less
A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century
Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance.26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.
more »
« less
- PAR ID:
- 10217490
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 13
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2021442118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The persistence and size of the Greenland Ice Sheet (GrIS) through the Pleistocene is uncertain. This is important because reconstructing changes in the GrIS determines its contribution to sea level rise during prior warm climate periods and informs future projections. To understand better the history of Greenland’s ice, we analyzed glacial till collected in 1993 from below 3 km of ice at Summit, Greenland. The till contains plant fragments, wood, insect parts, fungi, and cosmogenic nuclides showing that the bed of the GrIS at Summit is a long-lived, stable land surface preserving a record of deposition, exposure, and interglacial ecosystems. Knowing that central Greenland was tundra-covered during the Pleistocene informs the understanding of Arctic biosphere response to deglaciation.more » « less
-
This data file contains the cosmogenic beryllium-10 (10Be), aluminum-26 (26Al), and chlorine-36 (36Cl) data from the frozen sediments underneath the Camp Century ice, produced at the Cosmogenic Nuclide Laboratory of the Lamont-Doherty Earth Observatory within National Science Foundation (NSF) Award 2114634 ('Collaborative Research: A fossil ecosystem under the ice: deciphering the glacialand vegetation history of northwest Greenland using long-lost Camp Century basal sediment'). These data help understanding the complexity of the 3 meters (m) of frozen sediment underneath the Camp Century ice core, and adds constraints to the question of past stability of this sector of the Greenland Ice Sheet. We have processed relatively small sub-samples we received from the University of Vermont team (lead PI Paul Bierman), by separating and de-contaminating quartz and feldspar, and measuring the cosmogenic isotopes listed above down the frozen sediment column. These important and complex data are currently prepared for publication under the lead of Lamont postdoc Joanna Charton.more » « less
-
Abstract The landscape hidden beneath the Greenland Ice Sheet remains one of the most sparsely mapped regions on Earth, but offers a unique record of environmental conditions prior to and during widespread glaciation, and of the ice sheet's response to changing climates. In particular, subglacial valleys observed across Greenland may preserve geomorphological information pertaining to landscape and ice sheet evolution. Here we analyze the morphology of a subglacial valley network in northern Greenland using bed elevation measurements acquired during multi‐year airborne radio‐echo sounding surveys. Channel profile morphologies are consistent with a primarily fluvial origin of the network, with evidence for localized modification by ice and/or meltwater. Gravity and magnetic anomalies suggest that the spatial organisation of the valley network is influenced by regional‐scale geological structure, implying a long‐lived and well‐established hydrological system. We also document two knickzones in the valley longitudinal profile and terraces above the channel floor in the lower course of the network. These observations, combined with stream power modeling, indicate that northern Greenland experienced two episodes of relative base level fall during the Neogene (∼150 m at ca. 12–3.7 Ma and ∼380 m at ca. 8.2–2.8 Ma) that resulted in channel profile adjustment via incision and knickzone retreat. The timing of the inferred base level fall correlates with other onshore and offshore records of uplift, denudation, and/or relative sea level change, and we suggest that tectonic and/or mantle‐driven uplift played an important role in the genesis of the modern landscape of northern Greenland.more » « less
-
Abstract. In 1966, drilling at Camp Century, Greenland, recovered 3.44 meters of sub-glacial material from beneath 1350 meters of ice. Although prior analysis of this material showed that the core includes glacial sediment, ice, and sediment deposited during an interglacial, the sub-glacial material had never been thoroughly studied. To better characterize this material, we analyzed 26 of the 30 core samples remaining in the archive. We performed a multi-scale analysis including X-ray diffraction, micro-computed tomography, and scanning electron microscopy to delineate stratigraphic units and assign facies based on inferred depositional processes. At the macro-scale, quantitative X-ray diffraction revealed that quartz and feldspar dominated the sediment and that there was insignificant variation in relative mineral abundance between samples. Meso-scale evaluation of the frozen material using micro-computed tomography scans showed clear variations in the stratigraphy of the core characterized by the presence of bedding, grading, and sorting. Micro-scale grain size and shape analysis, conducted using scanning electron microscopy, showed an abundance of fine-grained materials in the lower part of the core and no correspondence between grain shape parameters and sedimentary structures. These multiscale data define 5 distinct stratigraphic units within the core based on sedimentary process; K-means clustering analysis supports this proposed unit delineation. Our observations suggest that ice retreat uncovered the Camp Century region exposing basal till, covered with a remnant of basal ice or firn (Units 1 and 2). Continued ice-free conditions led to till disruption by liquid water causing a slump deposit (Unit 3) and the development of a small fluvial system of increasing energy up core (Units 4–5). Analysis of the Camp Century sub-glacial material indicates a diverse stratigraphy preserved below the ice that recorded episodes of glaciated and deglaciated conditions in northwestern Greenland. Our physical, geochemical, and mineralogic analyses reveal a history of deposition, weathering, and sediment transport preserved under the ice and show the promise of sub-glacial materials to increase our knowledge of past ice sheet behavior over time.more » « less