Coexistence of 5G new radio unlicensed (NR-U) and Wi-Fi is highly prone to the collisions among NR-U gNBs (5G base stations) and Wi-Fi APs (access points). To improve performance and fairness for both networks, various collision resolution mechanisms have been proposed to replace the simple listen-before-talk (LBT) scheme used in the current 5G standard. We address two gaps in the literature: first, the lack of a comprehensive performance comparison among the proposed collision resolution mechanisms and second, the impact of multiple traffic priority classes. Through extensive simulations, we compare the performance of several recently proposed collision resolution mechanisms for NR-U/Wi-Fi coexistence. We extend one of these mechanisms to handle multiple traffic priorities. We then develop a traffic-aware multi-objective deep reinforcement learning algorithm for the scenario of coexistence of high-priority traffic gNB user equipment (UE) with multiple lower-priority traffic UEs and Wi-Fi stations. The objective is to ensure low latency for high-priority gNB traffic while increasing the airtime fairness among the NR-U and Wi-Fi networks. Our simulation results show that the proposed algorithm lowers the channel access delay of high-priority traffic while improving the fairness among both networks.
more »
« less
WaveFlex: A Smart Surface for Private 5G CBRS Networks
We present the design and implementation of WaveFlex, the first smart surface that enhances Private 5G networks operating under the shared-license framework in the Citizens Broadband Radio Service frequency band. WaveFlex works in the presence of frequency diversity: multiple nearby base stations operating on different frequencies, as dictated by a Spectrum Access System coordinator. It also handles time dynamism: due to the dynamic sharing rules of the CBRS band, base stations occasionally switch channels, especially when priority users enter the network. Finally, WaveFlex operates independently of the network itself, not requiring access to nor modification of the gNB or UEs, yet it remains compliant with and effective on prevailing cellular protocols. We have designed and fabricated WaveFlex on a custom multi-layer PCB, software defined radio based network monitor, and supporting control software and hardware. Our experimental evaluation benchmarks operational Private 5G and LTE networks running at full line rate. In a realistic indoor office scenario, 5G experimental results demonstrate an 8.58~dB average SNR gain, and an average throughput gain of 10.77 Mbps under a single gNB, and 12.84 Mbps under three gNBs, corresponding to throughput improvements of 18.4% and 19.5%, respectively.
more »
« less
- PAR ID:
- 10567694
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Networking
- Volume:
- 2
- Issue:
- CoNEXT4
- ISSN:
- 2834-5509
- Page Range / eLocation ID:
- 1 to 21
- Subject(s) / Keyword(s):
- 5G Network Metasurface Smart Surface Beamforming
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NextG cellular networks are designed to meet Quality of Service requirements for various applications in and beyond smartphones and mobile devices. However, lacking introspection into the 5G Radio Access Network (RAN) application and transport layer designers are ill-poised to cope with the vagaries of the wireless last hop to a mobile client, while 5G network operators run mostly closed networks, limiting their potential for co-design with the wider internet and user applications. This paper presents NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can stream fine-grained RAN capacity, latency, and retransmission information to application servers to enable better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. Our experimental evaluation on various 5G Standalone base stations demonstrates NR-Scope can achieve less than 0.1% throughput error estimation for every UE in a RAN. The code is available at https://github.com/PrincetonUniversity/NR-Scope.more » « less
-
null (Ed.)With the unprecedented rise in traffic demand and mobile subscribers, real-time fine-grained optimization frameworks are crucial for the future of cellular networks. Indeed, rigid and inflexible infrastructures are incapable of adapting to the massive amounts of data forecast for 5G networks. Network softwarization, i.e., the approach of controlling “everything” via software, endows the network with unprecedented flexibility, allowing it to run optimization and machine learning-based frame- works for flexible adaptation to current network conditions and traffic demand. This work presents QCell, a Deep Q-Network- based optimization framework for softwarized cellular networks. QCell dynamically allocates slicing and scheduling resources to the network base stations adapting to varying interference con- ditions and traffic patterns. QCell is prototyped on Colosseum, the world’s largest network emulator, and tested in a variety of network conditions and scenarios. Our experimental results show that using QCell significantly improves user’s throughput (up to 37.6%) and the size of transmission queues (up to 11.9%), decreasing service latency.more » « less
-
5G and open radio access networks (Open RANs) will result in vendor-neutral hardware deployment that will require additional diligence towards managing security risks. This new paradigm will allow the same network infrastructure to support virtual network slices for transmit different waveforms, such as 5G New Radio, LTE, WiFi, at different times. In this multi- vendor, multi-protocol/waveform setting, we propose an additional physical layer authentication method that detects a specific emitter through a technique called as RF fingerprinting. Our deep learning approach uses convolutional neural networks augmented with triplet loss, where examples of similar/dissimilar signal samples are shown to the classifier over the training duration. We demonstrate the feasibility of RF fingerprinting base stations over the large-scale over-the-air experimental POWDER platform in Salt Lake City, Utah, USA. Using real world datasets, we show how our approach overcomes the challenges posed by changing channel conditions and protocol choices with 99.86% detection accuracy for different training and testing days.more » « less
-
Despite the promising attributes of the 12 GHz band for expanding terrestrial 5G network’s capacity and coverage, interference between coexisting networks remains a major issue. This paper develops a simulation-based evaluation framework and investigates the harmful interference between the 5G radio links and incumbent fixed non-geostationary satellite orbit (NGSO) fixed satellite services (FSS) receivers of the 12 GHz band. A variety of features including actual deployment locations of 5G base stations (BSs) and fixed NGSO FSS receivers, industry standardized beamforming at BSs, directional signal reception at FSS receivers, realistic propagation channels with obstruction from buildings, and channel scheduling at 5G BSs are incorporated in the interference study. Simulation results conducted in a realistic urban-micro deployment scenario confirm that the terrestrial 5G networks with directional BSs can coexist in the 12GHz band by suitably selecting exclusion zone’s radius around the FSS receiver. Simulation results also show that interference in the coexisting network can be notably reduced by appropriately activating BSs in the 12 GHz band based on their locations and surroundings.more » « less
An official website of the United States government

