skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 18, 2025

Title: Athena: Seeing and Mitigating Wireless Impact on Video Conferencing and Beyond
Rapid delay variations in today’s access networks impair the QoE of low-latency, interactive applications, such as video conferencing. To tackle this problem, we propose Athena, a framework that correlates high-resolution measurements from Layer 1 to Layer 7 to remove the fog from the window through which today’s video-conferencing congestion-control algorithms see the network. This cross-layer view of the network empowers the networking community to revisit and re-evaluate their network designs and application scheduling and rate-adaptation algorithms in light of the complex, heterogeneous networks that are in use today, paving the way for network-aware applications and application-aware networks.  more » « less
Award ID(s):
2232457 2223556
PAR ID:
10567698
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400712722
Page Range / eLocation ID:
103 to 110
Subject(s) / Keyword(s):
Video Conferencing Network Measurement 5G Networks
Format(s):
Medium: X
Location:
Irvine, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. 5G wireless networks leverage complex scheduling, retransmission, and adaptation mechanisms to maximize their efficiency. These mechanisms interact to produce significant fluctuations in uplink and downlink capacity and latency, markedly impacting the the performance of real-time communication and multimedia applications, such as video conferencing. These applications are particularly sensitive to such fluctuations, resulting in lag, stuttering, distorted audio, and low video quality. In this paper, we present a cross-layer view of 5G networks and their impact on and interaction with video-conferencing applications. We conduct novel, detailed measurements of both private CBRS and commercial carrier cellular network dynamics, capturing physical- and link-layer events and correlating them with their effects at the network and transport layers, and the video-conferencing application itself. Our two datasets comprise days of low-rate campus-wide Zoom telemetry data, and hours of high-rate, correlated WebRTC-network-5G telemetry data. Based on these data, we trace performance anomalies back to root causes, identifying 24 previously unknown causal event chains that degrade 5G video conferencing. Armed with this knowledge, we build Domino, a tool that automates this process and is user-extensible to future wireless networks and interactive applications. 
    more » « less
  2. null (Ed.)
    The global pandemic of COVID-19 has turned the spotlight on video conferencing applications like never before. In this critical time, applications such as Zoom have experienced a surge in its user base jump over the 300 million daily mark (ZoomBlog, 2020). The increase in use has led malicious actors to exploit the application, and in many cases perform Zoom Bombings. Therefore forensically examining Zoom is inevitable. Our work details the primary disk, network, and memory forensic analysis of the Zoom video conferencing application. Results demonstrate it is possible to find users' critical information in plain text and/or encrypted/encoded, such as chat messages, names, email addresses, passwords, and much more through network captures, forensic imaging of digital devices, and memory forensics. Furthermore we elaborate on interesting anti-forensics techniques employed by the Zoom application when contacts are deleted from the Zoom application's contact list. 
    more » « less
  3. The increasing popularity of video streaming and conferencing services have altered the nature of Internet traffic. In this paper, we take a first step toward quantifying the impact of this changing nature of traffic on the Quality of Experience (QoE) of popular video streaming and conferencing applications. We first analyze the traffic characteristics of these applications and of backbone links, and show how simple multipath routing may adversely impact application QoE. To mitigate this problem, we propose a new routing path selection approach, inspired by the TCP timeout computation algorithm, that uses both the average and variation of path load. Preliminary results show that this approach improves application QoE by on average 14% and packet latency by 11% for video streaming and conferencing applications, respectively. 
    more » « less
  4. While enterprise networks follow best practices and security measures, residential networks often lack these protections. Home networks have constrained resources and lack a dedicated IT staff that can secure and manage the network and systems. At the same time, homes must tackle the same challenges of securing heterogeneous devices when communicating to the Internet. In this work, we explore combining software-defined networking and proxies with commodity residential Internet routers. We evaluate a "whole home" proxy solution for the Skype video conferencing application to determine the viability of the approach in practice. We find that we are able to automatically detect when a device is about to use Skype and dynamically intercept all of the Skype communication and route it through a proxy while not disturbing unrelated network flows. Our approach works across multiple operating systems, form factors, and versions of Skype. 
    more » « less
  5. We revisit the long-standing problem of providing network QoS to applications, and propose the concept of judicious QoS -- combining the cheaper, best effort IP service with the cloud, which offers a highly reliable infrastructure and the ability to add in-network services, albeit at higher cost. Our proposed J-QoS framework offers a range of reliability services with different cost vs. delay trade-offs, including: i) a forwarding service that forwards packets over the cloud overlay, ii) a caching service, which stores packets inside the cloud and allows them to be pulled in case of packet loss or disruption on the Internet, and iii) a novel coding service that provides the least expensive packet recovery option by combining packets of multiple application streams and sending a small number of coded packets across the more expensive cloud paths. We demonstrate the feasibility of these services using measurements from RIPE Atlas and a live deployment on PlanetLab. We also consider case studies on how J-QoS works with services up and down the network stack, including Skype video conferencing, TCP-based web transfers and cellular access networks. 
    more » « less